Activation Energy

1. From the two figures, A and B, which reaction is faster? Why?

2. Consider the following chemical equation:

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=135 \mathrm{~kJ} / \mathrm{mol}
$$

The activation energy, E_{a}, is $152 \mathrm{~kJ} / \mathrm{mol}$. Draw a labeled energy diagram for this reaction and calculate E_{a} for the reverse reaction. Does the forward or the reverse reaction have the largest rate constant, k ? Is the reaction endothermic or exothermic in the forward direction?
3. A certain first order reaction has a rate constant of $2.63 \times 10^{-2} \mathrm{~s}^{-1}$ at $22.0^{\circ} \mathrm{C}$. What is the value of k at $75.0^{\circ} \mathrm{C}$ if $\mathrm{E}_{\mathrm{a}}=76.9 \mathrm{~kJ} / \mathrm{mol}$?

