Activation Energy

1. From the two figures, A and B, which reaction is faster? Why?

A

Reaction Progress
B

Figure B shows the faster reaction due to the smaller activation energy.
2. Consider the following chemical equation:

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=+135 \mathrm{~kJ} / \mathrm{mol}
$$

The activation energy, E_{a}, is $152 \mathrm{~kJ} / \mathrm{mol}$. Draw a labeled energy diagram for this reaction and calculate E_{a} for the reverse reaction. Does the forward or the reverse reaction have the largest rate constant, k ? Is the reaction endothermic or exothermic in the forward direction?

$\mathrm{E}_{\mathrm{a} \text {, reverse }}=152 \mathrm{~kJ} / \mathrm{mol}-135 \mathrm{~kJ} / \mathrm{mol}=17 \mathrm{~kJ} / \mathrm{mol}$ The reverse reaction has the largest rate constant The reaction is endothermic
3. A certain first order reaction has a rate constant of $2.63 \times 10^{-2} \mathrm{~s}^{-1}$ at $22.0^{\circ} \mathrm{C}$. What is the value of k at $75.0^{\circ} \mathrm{C}$ if $E_{a}=76.9 \mathrm{~kJ} / \mathrm{mol}$?

$$
\begin{aligned}
& \ln \left(\frac{k_{2}}{k 1}\right)=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& k_{2}=? \mathrm{~T}_{2}=348.15 \mathrm{~K} \quad \mathrm{~T}_{1}=295.15 \mathrm{~K} \quad \mathrm{~K}_{1}=2.63 \times 10^{-2} \mathrm{~s}^{-1} \\
& \ln \left(\frac{k_{2}}{2.63 \times 10^{-2} s^{-1}}\right)=-\frac{76900 \mathrm{~J} / \mathrm{mol}}{8.314 \frac{J}{m o l \cdot K}}\left(\frac{1}{348.15 \mathrm{~K}}-\frac{1}{295.15 \mathrm{~K}}\right) \\
& \quad \ln \left(\frac{k_{2}}{2.63 \times 10^{-2} s^{-1}}\right)=4.77 \quad \text { take antilog of both sides } \\
& \frac{k_{2}}{2.63 \times 10^{-2} s^{-1}}=e^{4.77} \quad k_{2}=3.10
\end{aligned}
$$

