Atomic Mass, Number of atoms, and the Mole

1. What is the atomic mass and the molar mass of iron, Fe? Use the correct units for each.

The atomic mass is 55.845μ
The molar mass is $55.845 \mathrm{~g} / \mathrm{mol}$
2. How many atoms are in 65.34 g of silicon, Si ?

$$
\begin{aligned}
& \mathrm{g} \rightarrow \text { mole } \rightarrow \text { atoms } \\
& 28.0855 \mathrm{~g}=1 \text { mole and } 1 \text { mole }=6.02 \times 10^{23} \text { atoms } \\
& 65.34 \mathrm{~g} \times \frac{\text { mole }}{28.0855 \mathrm{~g}} \times \frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \text { mole }}=1.401 \times 10^{24} \text { atoms }
\end{aligned}
$$

3. A 1.55 g sample of element X has 1.28×10^{22} atoms. What is the identity of element X ?

$$
\text { Atomic mass in } \mathrm{g} / \mathrm{mol}=\frac{1.55 \mathrm{~g}}{1.28 \times 10^{22} \mathrm{atoms}} \times \frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol}}=72.89 \mathrm{~g} / \mathrm{mol}
$$

X = germanium, Ge
4. How many grams are in 2.65 moles of nitrogen?

$$
\begin{aligned}
& \text { moles } \rightarrow \mathrm{g} \text { and } 1 \text { mole of } \mathrm{N}=14.0067 \mathrm{~g} \\
& 2.65 \mathrm{~mol} \times \frac{14.0067 \mathrm{~g}}{1 \mathrm{~mol}}=37.1 \mathrm{~g} \mathrm{~N}
\end{aligned}
$$

5. How many moles are in 23.26 g of sodium? How many sodium atoms is this?
$g \rightarrow$ mole and mole \rightarrow atoms
$22.99 \mathrm{~g}=1$ mole and 1 mole $=6.02 \times 10^{23}$ atoms
$23.25 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{22.99 \mathrm{~g}}=1.01 \mathrm{~mol} \mathrm{Na}$
$1.01 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol}}=6.08 \times 10^{23}$ atoms
