1. Calculate the molecular mass of ibuprofen $\mathbf{C}_{13} \mathbf{H}_{18} \mathrm{O}_{2}$

Number of atoms C__ $\mathrm{H}_{-} \mathrm{O}_{-}$
Atomic mass of C \qquad amu H \qquad amu

O \qquad amu
2. Calculate the formula weight of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
\qquad S \qquad

Atomic mass of Al amu S \qquad amu O \qquad amu
3. How many molecules of oxygen $\left(\mathrm{O}_{2}\right)$ are present in a 0.250 mol sample of the gas? Given: Desired

Equivalences:
Conversion factors

Setup:
4. I have $2.61 \times 10^{23} \mathrm{C}$ atoms. How many moles is this? How many grams?

Given units desired units
Equivalences
\square

Conversion factors

Setup:
5. Calculate the molar mass of NH_{3}.

What is the mass in grams of $0.25 \mathbf{~ m o l ~ N H}_{3}$?

Given: Desired: Equivalence:
Conversion Factors

Setup:

How many moles NH_{3} are in $\mathbf{2 5 . 0} \mathbf{g}$?
Given: Desired: Equivalence:
Setup:
6. How many moles of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ are in a 350 mg tablet?
7. How many moles of sodium hydrogen phosphate are in 2.8 g ? How many moles of Na^{+}ions? How many moles of $\mathrm{HPO}_{4}{ }^{2-}$ ions?
8. Consider the following reaction:
$\mathrm{Ni}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \quad \mathrm{NiCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
ALWAYS make sure equation is balanced!!!!!!!!!!!
a) How many moles of nickel will react with 2.40 moles HCl ?

Mole ratios: $\frac{1 \mathrm{~mol} \mathrm{Ni}}{2 \mathrm{~mol} \mathrm{HCl}}$ and $\frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Ni}}$
Setup: $2.40 \mathrm{~mol} \mathrm{HCl} \quad \mathrm{x}=\square$
b) How many moles of NiCl_{2} are formed if 3.2 moles of HCl are reacted?

Mole ratios: \qquad and \qquad

Setup: $3.2 \mathrm{~mol} \mathrm{HCl} x \quad=\square$
c) How many grams of NiCl_{2} are produced for every 2.60 mol of Ni reacted?

Mole ratios: \qquad and \qquad
Equivalence: $\quad 1 \mathrm{~mol} \mathrm{NiCl}_{2}=126.9 \mathrm{~g}$
Additional Conversion factors \qquad and \qquad

Setup: 2.60 mol Ni x \qquad X \qquad \square
d) How many grams of HCl is needed to produce $0.6678 \mathrm{~g} \mathrm{H}_{2}$ gas?

Mole ratios: \qquad and \qquad
Equivalences: $1 \mathrm{~mol} \mathrm{HCl}=36.460 \mathrm{~g}$ and $1 \mathrm{~mole}_{\mathrm{H}}^{2}=2.016 \mathrm{~g}$ Additional Conversion Factors:

Setup: $0.6778 \mathrm{~g} \mathrm{H}_{2} \mathrm{x}$ \qquad X \qquad x $=$ \square
e) Using the information obtained from part c , what is the percent yield if in an experiment 322 g of NiCl_{2} was recovered?

$$
\% \text { yield }=\frac{\text { actual yield, } \mathrm{g}}{\text { theoretical yield }, \mathrm{g}} \quad \times 100 \%
$$

theoretical yield \qquad actual yield \qquad calculation:

