Atomic Mass and Molar Mass Conversions and Stoichiometry

1. Calculate the molecular mass of ibuprofen C13H18O2

 Number of atoms C_____ H ____ O ____

 Atomic mass of C _____ amu H _____ amu O _____amu

2. Calculate the formula weight of Al₂(SO₄)₃.

 Number of atoms Al _____ S ____ O ____

 Atomic mass of Al _____ amu
 S ______ amu
 O ______ amu

3. How many molecules of oxygen (O₂) are present in a 0.250 mol sample of the gas? Given: Desired

Equivalences:

Conversion factors

Setup:

4. I have 2.61 x 10^{23} C atoms. How many moles is this? How many grams?

Given units	desired units
-------------	---------------

Equivalences

Roadmap

Conversion factors

Setup:

5. Calculate the molar mass of NH₃.

What is the mass in grams of 0.25 mol NH₃?

Given: Desired: Equivalence:

Conversion Factors

Setup:

How many moles NH₃ are in 25.0 g?

Given: Desired: Equivalence:

Setup:

- 6. How many moles of aspirin (C₉H₈O₄) are in a 350 mg tablet?
- 7. How many moles of sodium hydrogen phosphate are in 2.8 g? How many moles of Na⁺ ions? How many moles of HPO₄²⁻ ions?
- 8. Consider the following reaction:

Ni (s) + 2 HCl (aq) \longrightarrow NiCl₂ (aq) + H₂(g)

<u>ALWAYS</u> make sure equation is balanced!!!!!!!!!!

a) How many moles of nickel will react with 2.40 moles HCl?

Mole rat	ios:	<u>1 mol Ni</u> 2 mol HCl	and	<u>2 mol HCl</u> 1 mol Ni		
Setup:	2.4	0 mol HCl	X	 	=	

Copyright © 2022 All Rights Reserved, AJ Mundell Publishing, INC., Dr. A. O'Connor

b) How many moles of NiCl ₂ are formed if 3.2 moles of HCl are reacted?
Mole ratios: and
Setup: $3.2 \mod HCl x =$
c) How many grams of NiCl ₂ are produced for every 2.60 mol of Ni reacted?
Mole ratios: and
Equivalence: $1 \mod \text{NiCl}_2 = 126.9 \text{ g}$
Additional Conversion factors and
Setup: 2.60 mol Ni x x
d) How many grams of HCl is needed to produce 0.6678 g H ₂ gas?
Mole ratios: and
Equivalences: 1 mol HCl = 36.460 g and 1 mole H ₂ = 2.016 g
Additional Conversion Factors:
Setup: 0.6778 g H ₂ x x =
 e) Using the information obtained from part c, what is the percent yield if in an experiment 322 g of NiCl₂ was recovered?
% yield = $\frac{\text{actual yield, g}}{\text{theoretical yield, g}} \times 100 \%$
theoretical yield actual yield

calculation: