Conversions

Do the following conversions: (first, determine the given and desired units, write a roadmap, write equivalences, and then write conversion factors from the equivalences)

Convert 25.2 in to cm
Convert 10.9 g to mg

$$
25.2 \mathrm{in} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=\mathbf{6 4 . 0} \mathbf{~ c m}
$$

Convert 0.644 mm to $\mu \mathrm{m}$
$0.644 \mathrm{~mm} \times \frac{10^{3} \mu \mathrm{~m}}{1 \mathrm{~mm}}=\mathbf{6 4 4} \boldsymbol{\mu m}$
Convert 726 mL to L
$726 \mathrm{~mL} \times \frac{1 L}{1000 \mathrm{~mL}}=\mathbf{0 . 7 2 6} \boldsymbol{L}$

Convert 6.2 cm to m
$6.2 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\mathbf{0 . 0 6 2} \mathbf{~ m}$
Convert 325 s to min
$325 s \times \frac{1 \mathrm{~min}}{60 s}=5.42 \mathrm{~min}$

A rectangular piece of gold leaf has a length of 8.65 cm , a width of 3.82 cm and a thickness of 0.14 cm . What is the volume in mL ?
$V=$ length x width x thickness
$V=8.65 \mathrm{~cm} \times 3.82 \mathrm{~cm} \times 0.14 \mathrm{~cm}=4.63 \mathrm{~cm}^{3}$
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL} \quad V=4.63 \mathrm{~mL}$
If the diameter of a red blood cell is $6.3 \times 10^{-6} \mathrm{~m}$, how many red blood cells are needed to make a line that is 2.5 inches long?
G: in D: \# Blood Cells
In $\rightarrow \mathrm{cm} \rightarrow \mathrm{m} \rightarrow$ \#cells
Equivalences: $1 \mathrm{in}=2.54 \mathrm{~cm}, 100 \mathrm{~cm}=1 \mathrm{~m}, 6.3 \times 10^{-6} \mathrm{~m}=$ \# of cells

$$
2.5 \text { in } \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \text { blood cell }}{6.3 \times 10^{-6} \mathrm{~m}}=\mathbf{1 . 0} \times \mathbf{1 0}^{4} \text { blood cells }
$$

A piece of metal is 13.8 in long and 20.5 in wide. The thickness of the metal is 2.8 in . What is the volume in cm^{3} ?
$\mathrm{V}=13.8 \mathrm{in} \times 20.5 \mathrm{in} \times 2.8 \mathrm{in}=792 \mathrm{in}^{3}$

$$
792 \mathrm{in}^{3} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}=\mathbf{1 . 3} \times \mathbf{1 0}^{4} \mathbf{c m}^{3}
$$

A cylindrical tube is 9.3 cm high and 0.75 cm in diameter. What is the volume in dm^{3} ? (Circumference $=2 \pi r$, and $\mathrm{V}_{\text {cylinder }}=\pi \mathrm{r}^{2} \mathrm{~h}$)
$R=1 / 2 d=1 / 2 \times 0.75 \mathrm{~cm}=0.375 \mathrm{~cm}$
$V=\pi \times r^{2} \times h=\pi \times(0.375 \mathrm{~cm})^{2} \times 9.3 \mathrm{~cm}=4.11 \mathrm{~cm}^{3}$
$1 \mathrm{~cm}=0.1 \mathrm{dm}$

$$
4.11 \mathrm{~cm}^{3} \times\left(\frac{0.1 \mathrm{dm}}{1 \mathrm{~cm}}\right)^{3}=\mathbf{0 . 0 0 4 1} \mathrm{dm}^{3}
$$

