Density Worksheet

Density is the mass in a given volume
The units of density are grams per mL or grams per cm^{3}

$d=\frac{m}{V}$

1. What is the density if 25.6 g of a metal in a volume of $11.2 \mathrm{~cm}^{3}$?

$$
d=\frac{m a s s}{V}=\frac{25.6 \mathrm{~g}}{11.2 \mathrm{~cm}^{3}}=2.29 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

2. How many mL of propanol are needed if 36.2 g are required for an experiment? The density of propanol is $0.803 \mathrm{~g} / \mathrm{mL}$?
$d=\frac{\text { mass }}{V} \quad$ and $\quad V=\frac{\text { mass }}{d}$

$$
V=\frac{36.2 \mathrm{~g}}{0.803 \frac{g}{m L}}=45.1 \mathrm{~mL}
$$

3. A spherical piece of metal has a mass of 87.6 g . Its diameter is 4.32 in. What is the density of the metal in $\mathrm{g} / \mathrm{cm}^{3}$? $V_{\text {sphere }}=4 / 3 \pi \mathrm{r}^{3}$. We are given the mass, and we need to find the volume. First determine the radius. $r=1 / 2 d=2.16$ in Next convert in to cm .

$$
\begin{gathered}
2.16 \mathrm{in} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=5.486 \mathrm{~cm} \quad V=\frac{4}{3} \pi(5.486 \mathrm{~cm})^{3}=691.6 \mathrm{~cm}^{3} \\
d=\frac{\text { mass }}{V}=\frac{87.6 \mathrm{~g}}{691.6 \mathrm{~cm}^{3}}=\mathbf{0 . 1 2 7} \mathbf{g} / \mathrm{cm}^{3}
\end{gathered}
$$

4. How many grams of lead, Pb , are required if the volume is 28.6 cm^{3} ? $d_{\text {lead }}=11.3 \mathrm{~g} / \mathrm{cm}^{3}$.

$$
d=\frac{m a s s}{V} \quad \text { and } \quad \text { mass }=d \times V=11.3 \frac{g}{\mathrm{~cm}^{3}} \times 28.6 \mathrm{~cm}^{3}=323 \mathrm{~g}
$$

5. A substance has a mass of 18.6 kg and a volume of 100.25 L . Will this substance float or sink in water?

Convert units to g and mL . Then calculate the density of the substance. The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$.

$$
d=\frac{m a s s}{V}=\frac{18600 \mathrm{~g}}{100250 \mathrm{~mL}}=\mathbf{0 . 1 8 6} \frac{\mathrm{g}}{\mathrm{~mL}}
$$

The substance has a density less than water, therefore, it will float.

