1 mole $=6.02 \times 10^{23}$ entities
Entities are atoms, ions, molecules, formula units, etc.

Mole day is on October 23.
This is in honor of Avogadro's Number, N_{A}. Avogadro's number is 6.02×10^{23}.

What is the molar mass of oxygen?
Look at the periodic table for oxygen.
The molar mass $=15.9994 \mathrm{~g} / \mathrm{mol}$
How many grams are in one mole of carbon?
Look at the periodic table for carbon.
1 mole $C=12.011 \mathrm{~g}$
How many nitrogen atoms are in 6.25 moles of nitrogen?
$\mathrm{mol} \mathrm{N} \rightarrow \mathrm{N}$ atoms 1 mole $\mathrm{N}=6.02 \times 10^{23}$ atoms
$6.25 \mathrm{~mol} \mathrm{~N} \times \frac{6.02 \times 10^{23} \mathrm{Natoms}}{1 \mathrm{~mol} \mathrm{~N}}=3.76 \times 1 \mathbf{0}^{\mathbf{2 4}} \mathrm{N}$ atoms
What is the mass of one aluminum, Al , atom?
$1 \mathrm{~mol} \mathrm{Al}=6.02 \times 10^{23} \mathrm{Al}$ atoms and $1 \mathrm{~mol} \mathrm{Al}=26.98 \mathrm{~g}$
atom $\rightarrow \mathrm{mol} \rightarrow \mathrm{g}$

$$
1 \mathrm{Al} \mathrm{atom} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{6.02 \times 10^{23} \mathrm{Al} \mathrm{atoms}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=4.50 \times \mathbf{1 0}^{-23} \mathrm{~g}
$$

Calculate the number of moles in 24.25 g of copper, Cu . $\mathrm{mol} \rightarrow \mathrm{g} \quad 1 \mathrm{~mol} \mathrm{Cu}=63.546 \mathrm{~g}$

$$
24.25 \mathrm{~g} \mathrm{Cu} \times \frac{1 \mathrm{~mol}}{63.546 \mathrm{~g}}=\mathbf{0 . 3 8 2} \mathbf{~ m o l ~} \mathbf{C u}
$$

How many copper atoms are in 24.25 g of copper, Cu?
From the above problem we have 0.382 mol Cu .
$1 \mathrm{~mol} \mathrm{Cu}=6.02 \times 10^{23}$ atoms

$$
0.382 \mathrm{~mol} \mathrm{Cu} \times \frac{6.02 \times 10^{23} \mathrm{Cu} \text { atoms }}{1 \mathrm{~mol} \mathrm{Cu}}=2.30 \times \mathbf{1 0}^{23} \mathbf{C u} \text { atoms }
$$

Calculate the number of moles in 2.45×10^{24} magnesium, Mg , atoms. Atoms \rightarrow moles 1 mole $\mathrm{Mg}=6.02 \times 10^{23}$ atoms

$$
2.45 \times 10^{23} \text { atoms } \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { atoms }}=\mathbf{0 . 4 0 7 \mathrm { mol } \mathrm { Mg }}
$$

