Concentration Units: Molarity

$$
M=\frac{\text { moles solute }}{L \text { solution }}
$$

1. What is the molarity of a solution prepared with 2.65 g of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ and then diluted with water to 500.00 mL ?
$\mathrm{Mm}_{\mathrm{m}} \mathrm{AgNO}_{3}=169.87 \mathrm{~g} / \mathrm{mol}$
$2.65 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol}}{169.87 \mathrm{~g}}=0.0156 \mathrm{~mol} \mathrm{AgNO}_{3}$
$500.00 \mathrm{~mL}=0.50000 \mathrm{~L}$
$M=\frac{0.0156 \mathrm{~mol} \mathrm{AgNO}}{3} \mathbf{0 . 5 0 0 0 0 \mathrm { L }}=\mathbf{0 . 0 3 1 2} \mathbf{~ M}$
2. How many g of sodium hydroxide, NaOH , are required to prepare 50.00 mL of solution that is 0.464 M NaOH ?

First, find the moles of NaOH and then convert to grams
$M=\frac{\text { moles solute }}{L \text { solution }} \quad$ and

$$
\text { moles }=M \times V(L)=0.464 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.05000 L=0.0232 \mathrm{~mol}
$$

Convert moles to grams. $\mathrm{Mm} \mathrm{NaOH}^{\mathrm{N}}=39.997 \mathrm{~g} / \mathrm{mol}$

$$
0.0232 \mathrm{~mol} \times \frac{39.997 \mathrm{~g}}{1 \mathrm{~mol}}=\mathbf{0 . 9 2 8} \mathrm{g} \mathrm{NaOH}
$$

3. How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are present in 1.25 liters of a 0.855 M solution?
$\mathrm{Mm} \mathrm{H}_{2} \mathrm{SO}_{4}=98.079 \mathrm{~g} / \mathrm{mol}$
$0.855 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 1.25 \mathrm{~L}=1.069 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$1.069 \mathrm{~mol} \times \frac{98.079 \mathrm{~g}}{1 \mathrm{~mol}}=105 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
4. How many mL of $0.855 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ is required to prepare 25.00 mL of a solution that is $0.125 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$?
$M_{1} V_{1}=M_{2} V_{2} M_{1}=0.855 \mathrm{M}, \mathrm{V}_{1}=?, M_{2}=0.125 \mathrm{M}$, and $\mathrm{V}_{2}=25.00 \mathrm{~mL}$
Solve for V_{1}

$$
V_{1}=\frac{M_{2} V_{2}}{M_{1}}=\frac{0.125 \mathrm{M} \times 25.00 \mathrm{~mL}}{0.855 \mathrm{M}}=3.65 \mathrm{~mL}
$$

5. If 72.50 mL of 2.64 M HCl is added to a 250.00 mL volumetric flask and diluted to the mark, what is the concentration of the solution?
$M_{1} V_{1}=M_{2} V_{2} M_{1}=2.64 \mathrm{M}, \mathrm{V}_{1}=72.50 \mathrm{~mL}, M_{2}=$?, and $\mathrm{V}_{2}=72.50 \mathrm{~mL}$ Solve for M_{2}.

$$
M_{2}=\frac{M_{1} V_{1}}{V_{2}}=\frac{2.64 \mathrm{M} \times 72.50 \mathrm{~mL}}{250.00 \mathrm{~mL}}=\mathbf{0 . 7 6 6 ~ M}
$$

