Molecular Mass, Molar Mass, and Formula Mass

1. What is the molecular mass of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$? What is the molar mass?
$5 \times(12.011 u)+12 x(1.00794 u)=72.15 u$
$M_{m}=72.15 \mathrm{~g} / \mathrm{mol}$
2. How many moles of oxygen are in 123.45 g ? $\mathrm{mol} \rightarrow \mathrm{g}$
$1 \mathrm{~mol} \mathrm{O}_{2}=2 \times 15.9994 \mathrm{~g} / \mathrm{mol}=31.999 \mathrm{~g} / \mathrm{mol}$
$123.45 \mathrm{~g} \times 1 \mathrm{~mol} / 31.999 \mathrm{~g}=3.858 \mathrm{~mol}$
3. What is the formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$? How many grams are in 6.54 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
Formula mass $=3 \times 40.078 u+2 \times 30.9738 u+8 \times 15.9994 u=310.18 u$
$6.54 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{310.18 \mathrm{~g}}{1 \mathrm{~mol}}=2.03 \times \mathbf{1 0}^{3} \mathrm{~g} \mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$
4. Caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, has a molar mass of _194.19 g/mol. How many nitrogen atoms are in 2.75 moles of caffeine?

Moles caffeine \rightarrow moles $N \rightarrow$ \# N atoms
2.75 mol caffeine $\times \frac{4 \text { mol } \mathrm{N}}{1 \text { mol caffeine }} \times \frac{6.02 \times 10^{23} \mathrm{Natoms}}{1 \text { mol } \mathrm{N}}=6.62 \times 1 \mathbf{1 0}^{24} \mathrm{~N}$ atoms
5. How many grams of sodium bromate are in 0.565 moles?
$\mathrm{Mm} \mathrm{NaBrO}_{3}=22.99 \mathrm{~g} / \mathrm{mol}+79.904 \mathrm{~g} / \mathrm{mol}+3 \times 15.9994 \mathrm{~g} / \mathrm{mol}=150.89 \mathrm{~g} / \mathrm{mol}$
$0.565 \mathrm{~mol} \times \frac{150.89 \mathrm{~g}}{1 \mathrm{~mol}}=85.3 \mathrm{~g} \mathrm{NaBrO} 3$

