Quantum Numbers

- 1. Define the quantum number, n.
- 2. Define the quantum number, l. Indicate what values I can have as well as the corresponding subshell.
- 3. Define the quantum number, m_1 . Indicate the values m_1 can have.
- 4. Define the quantum number, m_s and indicate its values.
- 5. Assign quantum numbers to the two outermost electrons of Br (follow the correct order of orbital filling).
- 6. Assign quantum numbers to the valence electrons of Sr.
- 7. Which of the following is not a valid set of quantum numbers?
- a) n = 2, l = 2, $m_l = 0$, $m_s = + 1/2$ b) n = 4, l = 3, $m_l = -3$, $m_s = +1/2$
- c) n = 5, l = 3, $m_l = -4$, $m_s = -1/2$ d) n = 5, l = 3, $m_l = -4$, $m_s = +1/2$
- e) n = 7, l = 0, m_l = -2, m_s = -1/2 f) n = 3, l = 2, m_l = +2, m_s = -1/2
- 8. Assign quantum numbers to each of the electrons in the 3d subshell of Cr.