Quantum Numbers

1. Define the quantum number, n.

This is the principal energy level quantum number. It can have integer values of 1 to ∞.
2. Define the quantum number, I. Indicate what values I can have as well as the corresponding subshell.
The azimuthal (angular momentum) quantum number. It indicates the subshell. s subshell, $l=0 ; p$ subshell, $l=1$; d subshell, $l=2 ; f$ subshell, $l=3$
3. Define the quantum number, m_{1}. Indicate the values m_{1} can have. Magnetic quantum number. Defines the spatial orientation of an orbital. It can have values of -1 to +1 .
4. Define the quantum number, m_{s} and indicate its values. The electron spin quantum number. Values can be $+1 / 2$ or $-1 / 2$
5. Assign quantum numbers to the two outermost electrons of Br (follow the correct order of orbital filling).
The valence shell electrons for Br are shown. The circled electrons are the 2 outermost electrons.

$$
\begin{aligned}
& n=4, l=1, m_{l}=-1, m_{s}=-1 / 2 \\
& n=4, l=1, m_{l}=0, m_{s}=-1 / 2
\end{aligned}
$$

6. Assign quantum numbers to the valence electrons of Sr.

Sr has 2 valence electrons in the 5 s .

$$
\begin{aligned}
& n=5, l=0, m_{1}=0, m_{s}=+1 / 2 \\
& n=5, l=0, m_{1}=0, m_{s}=-1 / 2 \quad \prod_{5 \mathrm{~s}}
\end{aligned}
$$

7. Which of the following is not a valid set of quantum numbers?
a) $n=2, l=2, m_{1}=0, m_{s}=+1 / 2$
b) $n=4, l=3, m_{l}=-3, m_{s}=+1 / 2$
(c) $n=5, l=3, m_{l}=-4, m_{s}=-1 / 2$
(d) $n=5, l=3, m_{l}=-4, m_{s}=+1 / 2$
(e) $n=7, l=0, m_{l}=-2, m_{s}=-1 / 2$
f) $n=3, l=2, m_{l}=+2, m_{s}=-1 / 2$
8. Assign quantum numbers to each of the electrons in the 3d subshell of Cr . Cr has an analogous configuration.
```
\(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow\) Going from left to right using the proper filling order:
\(n=3, l=2, m_{l}=-2, m_{s}=+1 / 2 ; n=3, l=2, m_{l}=-1, m_{s}=+1 / 2 ;\)
\(n=3, l=2, m_{l}=0, m_{s}=+1 / 2 ; n=3, l=2, m_{l}=+1, m_{s}=+1 / 2\)
\(l=2, m_{l}=+2, m_{s}=+1 / 2\)
```

