Calculation of K_{c} / K_{p}

1. Calculate K_{p} for the following reaction at $125^{\circ} \mathrm{C}$.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

The equilibrium pressures are: $P_{N H_{3}}=0.541 \mathrm{~atm}, P_{N_{2}}=$ 3.73 atm , and $\mathrm{P}_{\mathrm{H}_{2}}=11.2 \mathrm{~atm}$

$$
K_{p}=\frac{P_{H_{2}}^{3} P_{N H_{3}}}{P_{N H_{3}}^{2}}=\frac{(11.2)^{3} \times(3.73)}{(0.541)^{2}}=1.79 \times 10^{4}
$$

2. Consider the following reaction at $100^{\circ} \mathrm{C}$. The initial concentration of $\left[\mathrm{CO}_{2}\right]=0.325 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.0768 \mathrm{M}$. The equilibrium concentration of $[\mathrm{CO}]=0.0221 \mathrm{M}$.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) Write an ICE table.

$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$			\rightleftarrows	$\mathrm{CO}(\mathrm{g})$	$+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
l					

b) Calculate the equilibrium concentrations of each species.

$$
\begin{aligned}
& {\left[\mathrm{CO}_{2}\right]_{e q}=0.0821 \mathrm{M}-0.0221 \mathrm{M}=0.0600 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]_{e q}=0.0768 \mathrm{M}-0.0221 \mathrm{M}=0.057 \mathrm{M}} \\
& {[\mathrm{CO}]_{e q}=\left[\mathrm{H}_{2} \mathrm{O}\right]_{e q}=0.0221 \mathrm{M}}
\end{aligned}
$$

c) Calculate K_{c}.

$$
K_{c}=\frac{[C O]\left[H_{2} O\right]}{\left[C O_{2}\right]\left[H_{2}\right]}=\frac{(0.0221)(0.0221)}{(0.0600)(0.057)}=1.43 \times 10^{-1} \mathrm{M}
$$

d) Are there more reactants or products at equilibrium? reactants

