Calorimetry

1. Octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, has a specific heat of $2.22 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$. What quantity of heat, in kJ , is required to raise the temperature of 125.00 g of octane from $15.0^{\circ} \mathrm{C}$ to $28.0^{\circ} \mathrm{C}$?
2. Consider the equation below:

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

A 4.25 g sample of solid ammonium nitrate is dissolved in 60.0 g of water in a coffee cup calorimeter. The temperature decreases from $22.5^{\circ} \mathrm{C}$ to $17.4^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$, in $\mathrm{kJ} / \mathrm{mol}$ of $\mathrm{NH}_{4} \mathrm{NO}_{3}$, for this dissolution process. Assume the specific heat of the solution is that of water, $4.184 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$. Is this an endothermic or an exothermic process?
3. A 1.00 g sample of pine nuts was burned in a bomb calorimeter containing 250.0 grams of water at an initial temperature of 22.5 ${ }^{\circ} \mathrm{C}$. Once the reaction was completed, the temperature of the water was $49.2^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $8.74 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Calculate the heat of combustion for the pine nuts in kJ / g. How many Cal (food calories) is 100.g of pine nuts?

