Colligative Properties

1. What is the vapor pressure of an aqueous solution that has 25.0 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dissolved in 286.00 g of water at $29.0^{\circ} \mathrm{C}$? The vapor pressure of water at $29.0^{\circ} \mathrm{C}$ is 30.0 mmHg .

$$
\begin{aligned}
& P_{\text {soltn. }}=\mathrm{P}^{0} \times \mathrm{X}_{\text {solvent }} \\
& 25.0 \mathrm{~g} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3}=0.236 \mathrm{~mol} \quad 286.00 \mathrm{~g} \mathrm{H} \mathrm{O}=15.87 \mathrm{~mol} \\
& \chi_{\mathrm{H}_{2} \mathrm{O}}=\frac{15.87 \mathrm{~mol}}{15.87 \mathrm{mol+0.236mol}=0.985} \\
& \mathrm{P}_{\text {soltn. }}=30.03 \mathrm{mmHg} \times 0.985=29.6 \mathrm{mmHg}
\end{aligned}
$$

2. Calculate the freezing point of a solution that is prepared by dissolving 1.35 g of aspirin (acetylsalicylic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$) in 100.00 g of chloroform, CHCl_{3}. The melting point of CHCl_{3} is $-63.5^{\circ} \mathrm{C}$ and K_{f} $=4.70^{\circ} \mathrm{C} / \mathrm{m}$.
$1.35 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}=0.00750 \mathrm{~mol} 100.00 \mathrm{~g} \mathrm{CHCl}_{3}=0.10000 \mathrm{~kg}$ $m=\frac{0.00750 \mathrm{~mol}}{0.10000 \mathrm{~kg}}=0.0750 \mathrm{~m}$
$K_{f}=4.70^{\circ} \frac{\mathrm{C}}{\mathrm{m}} \times 0.0750 \mathrm{~m} \times 1=0.353^{\circ} \mathrm{C}$
Freezing point $=-63.5^{\circ} \mathrm{C}-0.353^{\circ} \mathrm{C}=-63.9^{\circ} \mathrm{C}$
3. What is the vapor pressure of a solution that contains 8.65 g of urea $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$ in 145.25 g of water at $35.0^{\circ} \mathrm{C}$? The vapor pressure of water at $35.0^{\circ} \mathrm{C}$ is 42.2 mmHg .

$$
\begin{aligned}
& i=1 \quad 145.25 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=8.06 \mathrm{~mol} \quad 8.65 \mathrm{~g} \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}=0.144 \mathrm{~mol} \\
& \mathrm{P}_{\text {soltn. }}=\mathrm{P} \times \times \mathrm{X}_{\text {solvent }} \\
& \chi_{\text {solvent }}=\frac{8.06 \text { mol }}{8.06 \mathrm{~mol}+0.144 \mathrm{~mol}}=0.982 \\
& \mathrm{P}_{\text {soltn. }}=42.2 \mathrm{mmHg} \times 0.982=41.4 \mathrm{mmHg}
\end{aligned}
$$

4. A certain sugar is obtained from the degradation of cellulose. A 250.00 mL aqueous solution contains 1.35 g of this sugar. At 28.2 ${ }^{\circ} \mathrm{C}$, the osmotic pressure is 425.6 mmHg . What is the molar mass of this sugar?

$$
\begin{aligned}
& 425.6 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760.0 \mathrm{mHgh}}=0.5600 \mathrm{~atm} \quad 28.2^{\circ} \mathrm{C}=301.35 \mathrm{~K} \\
& \Pi=M R T \quad \text { solve for } \mathrm{M} \quad M=\frac{\Pi}{R T}=\frac{0.500 \mathrm{~atm}}{0.0821 \frac{\operatorname{Latm} \mathrm{~m}}{\mathrm{moti} \times 301.35 \mathrm{~K}}}=0.0226 \mathrm{M} \\
& 0.0226 \mathrm{M} \times 0.25000 \mathrm{~L}=0.00565 \mathrm{~mol} \\
& M_{m}=\frac{1.35 \mathrm{~g}}{0.00565 \mathrm{~mol}}=238.9 \frac{\mathrm{~g}}{\mathrm{~mol}}=239 \frac{\mathrm{~g}}{\mathrm{~mol}}
\end{aligned}
$$

