Concentration Units

1. If 2.65 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in 825.22 g of water, what is the molality?
$2.65 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1 \mathrm{~mol}}{105.9888 \mathrm{~g}}=0.0250 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3} \quad 825.22 \mathrm{~g}=0.82522 \mathrm{~kg}$

$$
m=\frac{0.0250 \mathrm{~mol}}{0.82522 \mathrm{~kg}}=\mathbf{0 . 0 3 0 3} \mathbf{~ m}
$$

2. A solution contains 26.45 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 25.24 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ dissolved in 300.00 g of water. What is the mole fraction of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{Na}_{2} \mathrm{SO}_{4}$, and $\mathrm{H}_{2} \mathrm{O}$?
$26.45 \mathrm{~g} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \times \frac{1 \mathrm{~mol}}{294.185 \mathrm{~g}}=0.0899 \mathrm{~mol}$
$25.24 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}=0.178 \mathrm{~mol} \quad 300.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=16.65 \mathrm{~mol}$
$\chi_{K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}=\frac{0.0899 \mathrm{~mol}}{0.0899 \mathrm{~mol}+0.178 \mathrm{~mol}+16.65 \mathrm{~mol}}=\mathbf{0 . 0 0 5 3 1}$
$\chi_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{0.178 \mathrm{~mol}}{0.0899 \mathrm{~mol}+0.178 \mathrm{~mol}+16.65 \mathrm{~mol}}=\mathbf{0 . 0 1 0 5}$
$\chi_{\mathrm{H}_{2} \mathrm{O}}=\frac{16.65 \mathrm{~mol}}{0.0899 \mathrm{~mol}+0.178 \mathrm{~mol}+16.65 \mathrm{~mol}}=\mathbf{0 . 9 9 9 8}$
3. How many grams of HNO_{3} is required to prepare 50.00 g of a 2.54% by mass aqueous solution?
50.00 g soltn $\times \frac{2.54 \mathrm{~g} \mathrm{HNO}}{100.0 \mathrm{~g} \mathrm{soltn} .}=1.27 \mathrm{~g}$
4. An aqueous solution of $2.45 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ has a density of $1.79 \mathrm{~g} / \mathrm{mL}$. Calculate the percent by mass, the molality, and the mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$. $2.45 \mathrm{~mol}=240.29 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ Convert L soltn. to grams

1000 mL soltn. $\times \frac{1.79 \mathrm{~g}}{\mathrm{~mL}}=1790 \mathrm{~g}$ solution
$\%\left(\frac{w}{w}\right)=\frac{\text { mass solute, } g}{\text { mass solution, } g} \times 100=\frac{240.29 \mathrm{~g}}{1790 \mathrm{~g}} \times 100=\mathbf{1 3 . 4} \%$
$m=\frac{\text { mol solute }}{k g \text { solvent }} \quad$ mass $\mathrm{H}_{2} \mathrm{O}=1790 \mathrm{~g}-240.29 \mathrm{~g}=1549.71 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
$m=\frac{2.45 \mathrm{~mol}}{1.54971 \mathrm{~kg}}=1.58 \mathrm{~m}$
$\chi_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{2.45 \mathrm{~mol}}{2.45 \mathrm{~mol}+85.999 \mathrm{~mol}}=0.0285$
5. The concentration of Cl^{-}ion in water is 18.0 ppm . How many grams of chloride ion are in 275.00 mL of water? The density is $1.00 \mathrm{~g} / \mathrm{mL}$. $\quad 275.00 \mathrm{~mL} \times \frac{1.00 \mathrm{~g}}{\mathrm{~mL}}=275.00 \mathrm{~g}$ solution
$18.0 \mathrm{ppm}=\frac{\text { mass of solute }}{\text { mass of solution }} \times 10^{6} \quad$ solve for mass of solute
mass of solute $=\frac{18.0 \mathrm{ppm} \times 275.00 \mathrm{~g} \text { solution }}{10^{6}}=\mathbf{0 . 0 0 4 9 5} \boldsymbol{g}$

