Effusion of Gases

$$
\mu_{r m s}=\sqrt{\frac{3 R T}{M_{m}}} \quad \frac{\text { Rate }_{\text {Gas } A}}{\text { Rate }_{\text {Gas } B}}=\sqrt{\frac{M_{m_{B}}}{M_{m_{A}}}}
$$

1. Calculate the rms speed of nitrogen molecules, N_{2}, at $22.0^{\circ} \mathrm{C}$. Report the speed in meters.

$$
\begin{aligned}
& \mathrm{T}=22.0^{\circ} \mathrm{C}+273.15=295.15 \mathrm{~K}, \mathrm{M}_{\mathrm{m}}=28.0 \mathrm{~g} / \mathrm{mol}=0.0280 \mathrm{~kg} / \mathrm{mol} \\
& 1 \mathrm{~J}=\frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \mu_{r m s}=\sqrt{\frac{3 R T}{M_{m}}}=\sqrt{\frac{3 \times 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 295.15 \mathrm{~K}}{0.0280 \mathrm{~kg} / \mathrm{mol}}}=513 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. What is the molar mass of a gas that diffuses 1.92 times slower than Ne gas?

$$
\begin{aligned}
& \frac{\text { Rate Unknown }}{\text { Rate Ne }}=\sqrt{\frac{M_{m} \text { Ne }}{M_{m} \text { Unknown }}} \\
& \frac{1}{1.92}=\sqrt{\frac{20.1797 \frac{g}{M_{m} \text { Unknown }}}{}} \text { Square both sides of equation; solve for } M_{m} \\
& \text { Unknown. } \\
& M_{m} \text { Unknown }=20.1797 \frac{\mathrm{~g}}{\mathrm{~mol}} \times(1.92)^{2}=74.4 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

3. A given volume of O_{2} gas takes 68.2 seconds to diffuse. Another gas took 86.3 seconds to diffuse under the same conditions. Calculate the molar mass of the gas?

$$
\begin{aligned}
& \text { In this case we are given time. } \\
& \frac{86.3 \mathrm{~s}}{68.2 \mathrm{~s}}=\sqrt{\frac{M_{m} \text { Unknown gas }}{31.999 \mathrm{~g} / \text { mol }}} \quad \text { Square both sides of equation } \\
& \left(\frac{86.3 \mathrm{~s}}{68.2 \mathrm{~s}}\right)^{2}=\frac{M_{m} \text { Unknown gas }}{31.999 \mathrm{~g} / \text { mol }} \text { and } M m=51.24 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

4. A sample of Ne gas diffuses 15.5 cm in 3.4 minutes. How long would it take for Cl_{2} gas to diffuse the same distance?

$$
\frac{\text { rate } \mathrm{He}}{\text { rate } \mathrm{Cl}}{ }_{2}=\sqrt{\frac{70.9 \frac{\mathrm{~g}}{\text { mol }}}{20.1797 \frac{\mathrm{~g}}{\mathrm{~mol}}}=1.9}
$$

Ne effuses 1.9 times faster than $\mathrm{Cl}_{2} .1 .9 \times 3.4 \mathrm{~min}=6.0 \mathrm{~min}$.

