Enthalpy

$$
\begin{gathered}
q_{p}=\Delta H=\Delta E+P \Delta V \\
\Delta H=H_{\text {final }}-H_{\text {initial }}=H_{\text {products }}-H_{\text {reactants }} \\
W=-P \Delta V
\end{gathered}
$$

1. What conditions will the enthalpy change of a process or reaction be equal to the heat that is transferred into or out of the system?
2. If a process is run under constant pressure and heat is released from the system, will the enthalpy of the system increase or decrease?
3. Consider the following balanced equation:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

If the reaction were carried out in a constant volume container at constant temperature, would the amount of heat (absorbed or released) correspond to ΔH or ΔE ? Which quantity would be larger for this reaction?
4. A gas is confined to a vessel under a constant pressure. The gas undergoes a chemical reaction and absorbs 785 J of heat from the surroundings. There are 625 J of work done on the gas from the surroundings. Calculate both ΔH and ΔE for this reaction.

