Enthalpy

$$
\begin{gathered}
q_{p}=\Delta H=\Delta E+P \Delta V \\
\Delta H=H_{\text {final }}-H_{\text {initial }}=H_{\text {products }}-H_{\text {reactants }} \\
W=-P \Delta V
\end{gathered}
$$

1. What conditions will the enthalpy change of a process or reaction be equal to the heat that is transferred into or out of the system? If the process occurs under a constant pressure with only PV work. $\Delta H=q p$
2. If a process is run under constant pressure and heat is released from the system, will the enthalpy of the system increase or decrease?

It will decrease because both q and ΔH are negative.
3. Consider the following balanced equation:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

If the reaction were carried out in a constant volume container at constant temperature, would the amount of heat (absorbed or released) correspond to ΔH or ΔE ? Which quantity would be larger for this reaction?
At constant volume, ΔV is equal to zero and ΔE is equal to qu. $H=E+$ $P V$ and $\Delta H=\Delta E+\Delta(P V)$. An ideal gas a constant temperature and volume has $\Delta(P V)=V \Delta P=R T \Delta n$ where n is equal to the number of moles of gas. There are 3 moles of reactant gas and 2 moles of product gas and $\Delta n=2-3=-1 . \Delta(P V)$ is negative. The negative $\Delta(P V)$ term means ΔH will be smaller than ΔE.
4. A gas is confined to a vessel under a constant pressure. The gas undergoes a chemical reaction and absorbs 785 J of heat from the surroundings. There are 625 J of work done on the gas from the surroundings. Calculate both ΔH and ΔE for this reaction.

$$
\begin{aligned}
& \Delta E=q+W=785 \mathrm{~J}+625 \mathrm{~J}=1.41 \times 10^{3} \mathrm{~J} \\
& \text { At constant pressure, } q_{p}=\Delta H=785 \mathrm{~J}=0.785 \mathrm{~kJ}
\end{aligned}
$$

