Enthalpy

$$q_{p} = \Delta H = \Delta E + P\Delta V$$

$$\Delta H = H_{final} - H_{initial} = H_{products} - H_{reactants}$$

$$W = -P\Delta V$$

- 1. What conditions will the enthalpy change of a process or reaction be equal to the heat that is transferred into or out of the system? If the process occurs under a constant pressure with only PV work. $\Delta H = q_p$
- 2. If a process is run under constant pressure and heat is released from the system, will the enthalpy of the system increase or decrease?

It will decrease because both q and ΔH are negative.

3. Consider the following balanced equation:

$$2 \text{ NO (q)} + O_2(q) \rightarrow 2 \text{ NO}_2(q)$$

If the reaction were carried out in a constant volume container at constant temperature, would the amount of heat (absorbed or released) correspond to ΔH or ΔE ? Which quantity would be larger for this reaction?

At constant volume, ΔV is equal to zero and ΔE is equal to q_v . H = E + PV and $\Delta H = \Delta E + \Delta(PV)$. An ideal gas a constant temperature and volume has $\Delta(PV) = V\Delta P = RT\Delta n$ where n is equal to the number of moles of gas. There are 3 moles of reactant gas and 2 moles of product gas and $\Delta n = 2 - 3 = -1$. $\Delta(PV)$ is negative. The negative $\Delta(PV)$ term means ΔH will be smaller than ΔE .

4. A gas is confined to a vessel under a constant pressure. The gas undergoes a chemical reaction and absorbs 785 J of heat from the surroundings. There are 625 J of work done on the gas from the surroundings. Calculate both ΔH and ΔE for this reaction.

$$\Delta E = q + w = 785 J + 625 J = 1.41 \times 10^3 J$$

At constant pressure, $q_p = \Delta H = 785 J = 0.785 kJ$