Enthalpy and Stoichiometry

1. Consider the following unbalanced equation. How many $k J$ of heat are consumed when 5.69 moles of solid iron react? Is this reaction endothermic or exothermic?

$$
\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Fe}(\mathrm{~s}) \rightarrow \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}=+852 \mathrm{~kJ}
$$

2. Consider the following reaction:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g}) \Delta \mathrm{H}=+181.8 \mathrm{~kJ}$
a) is the reaction endothermic or exothermic?
b) Calculate the enthalpy change when 32.65 g of NO is produced.
3. Write a balanced chemical equation for the combustion of methanol, $\mathrm{CH}_{3} \mathrm{OH}$ in oxygen $\left(\mathrm{O}_{2}\right)$; the reaction gives off 727 g of heat. Calculate the enthalpy change when 12.56 g of methanol undergoes combustion in excess oxygen.
4. The enthalpy change when 1 mole of CH 4 is burned is -890 kJ . To vaporize one mole of water it takes 44.0 kJ of heat. What mass of methane must be burned (in oxygen) to provide the heat required to vaporize 1.50 g of water?
