Enthalpy and Stoichiometry

1. Consider the following unbalanced equation. How many $k J$ of heat are consumed when 5.69 moles of solid iron react? Is this reaction endothermic or exothermic?
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}=+852 \mathrm{~kJ}$
The reaction is endothermic
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}=+852 \mathrm{~kJ}$
$5.69 \mathrm{~mol} \mathrm{Fe} \times \frac{852 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{Fe}}=\mathbf{2 . 4 2} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ k J}$
2. Consider the following reaction:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g}) \Delta \mathrm{H}=+181.8 \mathrm{~kJ}$
a) is the reaction endothermic or exothermic? endothermic
b) Calculate the enthalpy change when 32.65 g of NO is produced.

$$
\begin{aligned}
& \mathrm{Mm}_{\mathrm{m}} \mathrm{NO}=30.01 \mathrm{~g} / \mathrm{mol} \\
& \quad 32.65 \mathrm{~g} \mathrm{NO} \times \frac{1 \mathrm{~mol} \mathrm{NO}}{30.01 \mathrm{~g} \mathrm{NO}} \times \frac{181.8 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{NO}}=\mathbf{9 8 . 9 0} \mathbf{~ k J}
\end{aligned}
$$

3. Write a balanced chemical equation for the combustion of methanol, $\mathrm{CH}_{3} \mathrm{OH}$ in oxygen $\left(\mathrm{O}_{2}\right)$; the reaction gives off 727 kJ of heat. Calculate the enthalpy change when 12.56 g of methanol undergoes combustion in excess oxygen.

$$
\begin{aligned}
& 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Delta \mathrm{H}=-727 \mathrm{~kJ} \\
& \mathrm{Mm} \mathrm{CH}_{3} \mathrm{OH}=32.04 \mathrm{~g} / \mathrm{mol} \\
& 12.56 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{CH}}{3} \mathrm{OH} \\
& 32.04 \mathrm{~g}
\end{aligned} \frac{727 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}=\mathbf{1 4 2} \mathbf{k J}
$$

4. The enthalpy change when 1 mole of CH_{4} is burned is -890 kJ . To vaporize one mole of water it takes 44.0 kJ of heat. What mass of methane must be burned (in oxygen) to provide the heat required to vaporize 1.50 g of water?

$$
\left.\begin{array}{l}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
1.50 \mathrm{~g} \mathrm{H} \\
2
\end{array}\right) \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g}} \times \frac{44.0 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{890 \mathrm{~J}} \times \frac{16.04 \mathrm{~g} \mathrm{CH}_{4}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=\mathbf{0 . 0 6 6 0} \mathrm{gCH}_{4} .
$$

