Gas Laws: Part 2

1. Helium gas has a pressure of 8.25 atm in a 4.65 L vessel. If the volume is decreased to 2.65 L , what is the pressure? The temperature is held constant.

$$
\begin{gathered}
P_{1} V_{1}=P_{2} V_{2} \quad P_{1}=8.25 \mathrm{~atm}, V_{1}=4.65 \mathrm{~L}, \mathrm{~V}_{2}=2.65 \mathrm{~L}, P_{2}=? \\
P_{2}=\frac{8.25 \mathrm{~atm} \times 4.65 \mathrm{~L}}{2.65 \mathrm{~L}}=\mathbf{1 4 . 5} \mathbf{~ a t m}
\end{gathered}
$$

2. Neon gas exerts a pressure of 125 kPa at 395 K . What is the pressure, in atm, if the temperature is increased to 500 K ? $101.3 \mathrm{kPa}=1 \mathrm{~atm}, 124 \mathrm{kPa} \times \frac{1 \mathrm{~atm}}{101.3 \mathrm{kPa}}=1.22 \mathrm{~atm}, \mathrm{P}_{1}=1.22 \mathrm{~atm}$, $\mathrm{T}_{1}=395 \mathrm{~K}, \mathrm{~T}_{2}=500 \mathrm{~K}$

$$
P_{2}=\frac{1.22 \mathrm{~atm} \times 500 \mathrm{~K}}{395 \mathrm{~K}}=\mathbf{1 . 5 5} \mathbf{~ a t m}
$$

3. A sample of chlorine gas occupies a volume of 785 mL at 1.00 atm at a temperature of $-9.00^{\circ} \mathrm{C}$. What volume will the gas occupy if the pressure is tripled and the temperature is increased to $167{ }^{\circ} \mathrm{C}$?
$P_{1}=1.00 \mathrm{~atm}, P_{2}=3.00 \mathrm{~atm}, V_{1}=0.785 \mathrm{~L}, \mathrm{~V}_{2}=?, \mathrm{~T}_{1}=-9.00^{\circ} \mathrm{C}+$
$273.15=264.15 \mathrm{~K}, \mathrm{~T}_{2}=167^{\circ} \mathrm{C}+273.15=440 \mathrm{~K}$
$V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{1.00 \mathrm{~atm} \times 0.785 \mathrm{~L} \times 440 \mathrm{~K}}{264.15 \mathrm{~K} \times 3.00 \mathrm{~atm}}=\mathbf{0 . 4 3 6} \mathbf{L}$
4. A $0.595 L$ sample of krypton gas is held under STP. What volume does the gas occupy if the pressure is tripled and the temperature is doubled?

$$
P_{1}=1.00 \mathrm{~atm}, P_{2}=3.00 \mathrm{~atm}, \mathrm{~T}_{1}=273.15 \mathrm{~K}, \mathrm{~T}_{2}=546.30 \mathrm{~K}, \mathrm{~V}_{1}=
$$

$$
0.594 \mathrm{~L}, \mathrm{~V}_{2}=\text { ? }
$$

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{1.00 \mathrm{~atm} \times 0.594 \mathrm{~L} \times 546.30 \mathrm{~K}}{273.15 \mathrm{~K} \times 3.00 \mathrm{~atm}}=\mathbf{0 . 3 9 6} \mathbf{L}
$$

5. A 45.0 L sample of N_{2} gas is under a pressure of 8.6 atm at a temperature of $89.2^{\circ} \mathrm{C}$. If the volume is decreased to 20.0 L , the temperature is decreased to $25.5^{\circ} \mathrm{C}$, what is the new pressure?
$P_{1}=8.6 \mathrm{~atm}, \mathrm{~V}_{1}=45.0 \mathrm{~L}, \mathrm{~V}_{2}=20.0 \mathrm{~L}, \mathrm{~T}_{1}=362.35 \mathrm{~K}, \mathrm{~T}_{2}=298.65 \mathrm{~K}$ $P_{2}=\frac{P_{1} V_{1} T_{2}}{V_{2}}=\frac{8.6 \mathrm{~atm} \times 45.0 \mathrm{~L} \times 298.65 \mathrm{~K}}{20.0 \mathrm{~L} \times 362.35 \mathrm{~K}}=\mathbf{1 5 . 9} \mathbf{~ a t m}$
6. How many grams of CO_{2} are contained in a 44.8 L vessel at STP?

There are 2 mol CO 2 which is 88.0 g

$$
n=\frac{1.00 \mathrm{~atm} \times 44.8 \mathrm{~L}}{0.0821 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273 \mathrm{~K}}=2.00 \mathrm{~mol}=88.0 \mathrm{~g} \mathrm{CO}_{2}
$$

