1. A cylinder is filled with a gas. The cylinder has a moveable piston. Indicate how the following would affect the pressure of the gas.
a) double the temperature while keeping the volume constant.

Let $P_{1}=1 \mathrm{~atm}, \mathrm{~T}_{1}=100 \mathrm{~K}, \mathrm{~T}_{2}=200 \mathrm{~K}$
$P_{2}=\frac{1 \mathrm{~atm} \times 200 \mathrm{~K}}{100 \mathrm{~K}}=2 \mathrm{~atm}$ Pressure doubles
b) Increase the volume by three times while keeping the temperature constant.

Let $P_{1}=1 \mathrm{~atm}, \mathrm{~V}_{1}=1 \mathrm{~L}, \mathrm{~V}_{2}=3 \mathrm{~L}$
$P_{2}=\frac{1 \mathrm{~atm} \times 1 L}{3 L}=0.3 \mathrm{~atm}$ Pressure decreases by one third.
c) double the volume while decreasing the temperature by one half.

Let $P_{1}=1 \mathrm{~atm}, T_{1}=100 \mathrm{~K}, \mathrm{~T}_{2}=50 \mathrm{~K}, \mathrm{~V}_{1}=1 \mathrm{~L}, \mathrm{~V}_{2}=2 \mathrm{~L}$
$P_{2}=\frac{1 \mathrm{~atm} \times 1 L \times 50 \mathrm{~K}}{2 \mathrm{~L} \times 100 \mathrm{~K}}=0.25 \mathrm{~atm}$ The pressure would decrease
d) increase the amount of gas by three while keeping the volume and temperature constant.

Let $P_{1}=1 \mathrm{~atm}, n_{1}=1 \mathrm{~mol}, n_{2}=3 \mathrm{~mol}$
$P_{2}=\frac{1 \mathrm{~atm} \times 3 \mathrm{~mol}}{1 \mathrm{~mol}}=3 \mathrm{~atm} \quad$ The pressure would increase
2. A cylinder with a moveable piston is filled with gas. Indicate how the following would affect the volume of the gas.
a) decrease the temperature by one-third while keeping the pressure constant

Let $\mathrm{V}_{1}=1 \mathrm{~L}, \mathrm{~T}_{1}=100 \mathrm{k}, \mathrm{T}_{2}=33.3 \mathrm{~K}$
$V_{2}=\frac{1 L \times 33.3 \mathrm{~K}}{100 \mathrm{~K}}=0.33 \mathrm{~L} \quad$ Volume has decreased
b) Increase the pressure by 75% while keeping the temperature constant.

Let $P_{1}=1 \mathrm{~atm}, V_{1}=1 \mathrm{~L}, P_{2}=1.75 \mathrm{~atm}$
$V_{2}=\frac{1 \mathrm{~atm} \times 1 \mathrm{~L}}{1.75 \mathrm{~atm}}=0.6 \mathrm{~L} \quad$ Volume has decreased
c) Halve the temperature and triple the pressure Let $P_{1}=1.00 \mathrm{~atm}, \mathrm{~T}_{1}=100 \mathrm{~K}, \mathrm{~V}_{1}=1 \mathrm{~L}, \mathrm{~T}_{2}=50 \mathrm{~K}, \mathrm{P}_{2}=3.00 \mathrm{~atm}$
$V_{2}=\frac{1.00 \mathrm{~atm} \times 50 \mathrm{~K} \times 1 \mathrm{~L}}{100 \mathrm{~K} \times 3.00 \mathrm{~atm}}=0.17 \mathrm{~L} \quad$ The volume decreases.
d) Increase the amount of gas by one-half while keeping the temperature and pressure constant.
Let $n_{1}=1 \mathrm{~mol}, \mathrm{n}_{2}=0.5 \mathrm{~mol}, \mathrm{~V}_{1}=1 \mathrm{~L}$
$V_{2}=\frac{1 L \times 0.5 \mathrm{~mol}}{1 \mathrm{~mol}}=2 \mathrm{~L} \quad$ The volume increases by 2 L
3. Which of the following has more molecules?
$1.00 \mathrm{~L} \mathrm{of}_{\mathrm{CO}_{2}}$ at STP, 1.00 L of O_{2} at STP, or $1.00 \mathrm{~L} \mathrm{~N}_{2}$ at STP?
They all contain the same number of gas molecules.

