Gas Mixtures and Collection of a Gas Over Water

> Dalton's Law of Partial Pressures $$
P_{\text {Total }}=P_{A}+P_{B}+P_{C}+\ldots P_{n}
$$

1. What is the total pressure, in atm, in a vessel that holds 1.45 atm of N_{2} gas and 3.98 atm of Ar gas?
2. A 4.15 L vessel holds 0.345 moles of oxygen gas and 1.25 moles of nitrogen gas at a temperature of $101{ }^{\circ} \mathrm{C}$. What is the pressure in atm?
3. What is the partial pressure of each gas in a vessel containing 2.1 $\mathrm{g} \mathrm{Ne}, 0.38 \mathrm{~g}$ of Xe , and 1.5 g of Ar if the total pressure is 3.1 atm ?
4. Hydrogen gas can be prepared in the laboratory with the reaction of zinc metal and sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(g)
$$

The hydrogen gas is collected over water. What volume of H_{2} gas is produced by the reaction of 0.245 g of zinc metal in excess $\mathrm{H}_{2} \mathrm{SO}_{4}$ if the temperature is $22.0^{\circ} \mathrm{C}$ and the barometric pressure is 750 torr? Vapor Pressure of Water

