Gas Mixtures and Collection of a Gas Over Water

$$
\begin{aligned}
& \text { Dalton's Law of Partial Pressures } \\
& \qquad P_{\text {Total }}=P_{A}+P_{B}+P_{C}+\ldots P_{n}
\end{aligned}
$$

1. What is the total pressure, in atm, in a vessel that holds 1.45 atm of N_{2} gas and 3.98 atm of Ar gas?

The total pressure is $1.45 \mathrm{~atm}+3.98 \mathrm{~atm}=5.43 \mathrm{~atm}$
2. A 4.15 L vessel holds 0.345 moles of oxygen gas and 1.25 moles of nitrogen gas at a temperature of $101{ }^{\circ} \mathrm{C}$. What is the pressure in atm?

$$
\begin{aligned}
& P=\frac{n R T}{V}=\frac{0.345 \mathrm{~mol} O_{2} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 374 \mathrm{~K}}{4.15}=2.55 \mathrm{~atm}\left(O_{2}\right) \\
& P_{N_{2}}=\frac{1.25 \mathrm{~mol} \times 0.0821 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 374 \mathrm{~K}}{4.15 \mathrm{~L}}=9.25 \mathrm{~atm} \\
& P t=2.55 \mathrm{~atm}+9.25 \mathrm{~atm}=11.8 \mathrm{~atm}
\end{aligned}
$$

3. What is the partial pressure of each gas in a vessel containing 2.1 $\mathrm{g} \mathrm{Ne}, 0.38 \mathrm{~g}$ of Xe , and 1.5 g of Ar if the total pressure is 3.1 atm ? $2.1 \mathrm{~g} \mathrm{Ne} \times \frac{1 \mathrm{~mol} \mathrm{Ne}}{20.1797 \mathrm{~g}}=0.10 \mathrm{~mol} \mathrm{Ne} \quad 0.38 \mathrm{~g} \mathrm{Xe} \times \frac{1 \mathrm{~mol} \mathrm{Xe}}{131.29 \mathrm{~g}}=0.0029 \mathrm{~mol} \mathrm{Xe}$
$1.5 \mathrm{~g} \mathrm{Ar} \times \frac{1 \mathrm{~mol} \mathrm{Ar}}{39.948 \mathrm{~g}}=0.038 \mathrm{~mol} \mathrm{Ar}$
$\chi_{N e}=\frac{0.10 \mathrm{~mol}}{0.10 \mathrm{~mol}+0.0029 \mathrm{~mol}+0.038 \mathrm{~mol}}=0.71 \quad \chi_{X e}=\frac{0.0029 \mathrm{~mol}}{0.10 \mathrm{~mol}+0.0029 \mathrm{~mol}+0.038 \mathrm{~mol}}=0.021$
$\chi_{A r}=\frac{0.038 \mathrm{~mol}}{0.10 \mathrm{~mol}+0.0029 \mathrm{~mol}+0.038 \mathrm{~mol}}=0.27$
$P_{\mathrm{Ne}}=0.71 \times 3.1 \mathrm{~atm}=2.2 \mathrm{~atm}, P_{X e}=0.021 \times 3.1 \mathrm{~atm}=0.065 \mathrm{~atm}$ $P_{\text {Ar }}=0.27 \times 3.1 \mathrm{~atm}=0.27 \times 3.1=0.84 \mathrm{~atm}$
4. Hydrogen gas can be prepared in the laboratory with the reaction of zinc metal and sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\mathrm{Zn}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The hydrogen gas is collected over water. What volume of H_{2} gas is produced by the reaction of 0.245 g of zinc metal in excess $\mathrm{H}_{2} \mathrm{SO}_{4}$ if the temperature is $22.0^{\circ} \mathrm{C}$ and the barometric pressure is 750 torr? Vapor Pressure of Water

Vapor Pressure of $\mathrm{H}_{2} \mathrm{O}$ at $22.0^{\circ} \mathrm{C}=19.8 \mathrm{mmHg}=19.8$ torr
750 torr -19.8 torr $=730$ torr and $730 \mathrm{torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{torr}}=0.961 \mathrm{~atm}$
$0.245 \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.38 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Zn}}=0.00374 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
$V=\frac{n R T}{P}=\frac{0.00374 \mathrm{~mol} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 295 \mathrm{~K}}{0.961 \mathrm{~atm}}=\mathbf{0 . 0 9 4 3} \mathbf{L} \boldsymbol{H}_{2} \mathrm{gas}$

