Gases and Stoichiometry Part 1 Answer Key

1. How many L of nitrogen are required to produce 646 L of NH_{3} ?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
646 \mathrm{LNH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=323 \mathrm{~L} \mathrm{~N}_{2}
$$

2. How many liters of O_{2} are needed to react with 125.62 g of methane? The experiment was run under a pressure of 780 mmHg at a temperature of $128.5^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
125.62 \mathrm{~g} \mathrm{CH}
\end{gathered} 4 \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=15.663 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2} .
$$

3. Consider the following reaction.

$$
\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{aq})+\mathrm{CO}_{2}(g)
$$

How many grams of pyruvic acid, $\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{3}$, were reacted if the sample gives $285.52 \mathrm{~mL} \mathrm{CO}_{2}$ gas at 756 mmHg at $28.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& V=0.28552 \mathrm{~L}, \mathrm{P}=756 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.995 \mathrm{~atm} \\
& n=\frac{P V}{R T}=\frac{0.995 \mathrm{~atm} \times 0.28552 \mathrm{~L}}{0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 301.15 \mathrm{~K}}=0.01149 \mathrm{~mol} \mathrm{CO} \\
& 2
\end{aligned}
$$

