1. Consider the following reaction:

$$
\mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{KCl}(\mathrm{~s})
$$

What volume of oxygen, in L, at $28.0^{\circ} \mathrm{C}$ and 1.00 atm is produced if 6.85 g of KClO_{3} decomposes?
2. Consider the following chemical equation:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

What volume of $\mathrm{C}_{2} \mathrm{H}_{2}$ is produced if 1.523 g of CaC_{2} is reacted. The pressure is 731.9 torr at a temperature of $23.0^{\circ} \mathrm{C}$.
3. An airbag has a volume of 60.0 L at a temperature of $22.0^{\circ} \mathrm{C}$. Nitrogen gas, N_{2}, is formed in a process from solid sodium azide, NaN_{3} according to the following chemical equation.

$$
\mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})
$$

How many grams of NaN_{3} is required if the pressure inside the airbag, when it inflates, is 826 mmHg ?

