Gases and Stoichiometry Part 2

1. Consider the following reaction:
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{KCl}(\mathrm{s})$
What volume of oxygen, in L, at $28.0^{\circ} \mathrm{C}$ and 1.00 atm is produced if 6.85 g of KClO_{3} decomposes?
$\mathrm{Mm} \mathrm{KClO}_{3}=122.55 \mathrm{~g} / \mathrm{mol} \quad 28.0^{\circ} \mathrm{C}+273.15=301.15 \mathrm{~K}$
$6.85 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{KClO}_{3}}{122.66 \mathrm{~g}} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{KClO}_{3}}=0.0838 \mathrm{~mol} \mathrm{O}_{2}$
PV $=$ nRT and $V=\frac{n R T}{P}=\frac{0.0838 \mathrm{~mol} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 301.15 \mathrm{~K}}{1.00 \mathrm{~atm}}=2.07 \mathrm{~L}$
2. Consider the following chemical equation:
$\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
What volume of $\mathrm{C}_{2} \mathrm{H}_{2}$ is produced if 1.523 g of CaC_{2} is reacted. The pressure is 731.9 torr at a temperature of $23.0^{\circ} \mathrm{C}$.
$M_{m} \mathrm{CaC} 2=64.009 \mathrm{~g} / \mathrm{mol} \quad 23.0^{\circ} \mathrm{C}+273.15=296.15 \mathrm{~K}$
$1.523 \mathrm{~g} \mathrm{CaC}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CaC}_{2}}{64.009 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{CaC}_{2}}=0.0238 \mathrm{~mol} \mathrm{C} \mathrm{C}_{2} \mathrm{H}_{2}$
$P V=n R T$ and $V=\frac{n R T}{P}=\frac{0.0238 \mathrm{~mol} \times 0.0821 \frac{\mathrm{Latm}}{\mathrm{mol} \cdot \mathrm{K}} \times 296.15 \mathrm{~K}}{731.9 \text { torr } \times 1.0 \mathrm{~atm}} \frac{\mathbf{7 6 0} \text { torr }}{}=\mathbf{0 . 9 5 9} \mathbf{L}$
3. An airbag has a volume of 60.0 L at a temperature of $22.0^{\circ} \mathrm{C}$. Nitrogen gas, N_{2}, is formed from solid sodium azide, NaN_{3} according to the following chemical equation.
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
How many grams of NaN_{3} is required if the pressure inside the airbag, once it inflates, is 826 mmHg ?
$826 \mathrm{mmHg}=1.09 \mathrm{~atm}, 22^{\circ} \mathrm{C}=295 \mathrm{~K}, \mathrm{Mm} \mathrm{NaN}_{3}=65.009 \mathrm{~g} / \mathrm{mol}$
$n=\frac{P V}{R T}=\frac{1.09 \mathrm{~atm} \times 60.0 \mathrm{~L}}{0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 295 \mathrm{~K}}=2.70 \mathrm{~mol} \mathrm{~N} 2$
$2.70 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}} \times \frac{65.009 \mathrm{~g} \mathrm{NaN}_{3}}{1 \mathrm{~mol} \mathrm{NaN}_{3}}=117 \mathrm{~g} \mathrm{NaN}_{3}$
