Heating and Cooling Curves

1. Calculate the total amount of energy, $\Delta \mathrm{H}$, required to cool a 34.5 g sample of CCl_{4} from $88.5^{\circ} \mathrm{C}$ to $-45.0^{\circ} \mathrm{C}$. Use the information below to draw a labeled cooling curve.

$$
\begin{array}{ll}
c_{s}=0.287 \frac{\mathrm{~J}}{g \cdot{ }^{\circ} \mathrm{C}} & \text { Melting point }=-23^{\circ} \mathrm{C} \\
c_{1}=0.866 \frac{\mathrm{~J}}{g \cdot{ }^{\circ} \mathrm{C}} & \text { Boiling point }=77^{\circ} \mathrm{C} \\
c_{g}=0.577 \frac{\mathrm{~J}}{g \cdot{ }^{\circ} \mathrm{C}} & \Delta H_{\text {fus }}=2.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\text {vap }}=32.5 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

