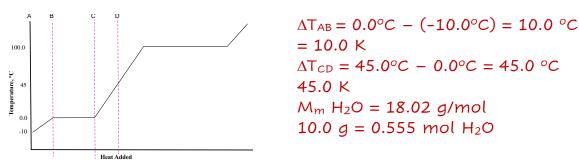
Heating and Cooling Curves Part 2


1. How much thermal energy, in kJ, is required to heat 10.0 g of ice from -10.0° C to 45.0° C?

Boiling Point =
$$100.0^{\circ}$$
C

Melting Point = 0.0° C

 $c_{\text{solid}} = 2.03 \frac{J}{g \cdot K}$
 $\Delta H_{\text{fus}} = 6.01 \text{ kJ/mol}$
 $c_{\text{liquid}} = 4.18 \frac{J}{g \cdot K}$
 $\Delta H_{\text{vap}} = 40.67 \text{ kJ/mol}$
 $c_{\text{gas}} = 1.84 \frac{J}{g \cdot K}$

Draw the heating curve.

$$q_{AB} = 10.0 \text{ g x } 2.03 \frac{J}{g \cdot K} \text{ x } 10.0 \text{ K} = 203 \text{ J} = 0.203 \text{ kJ}$$
 $q_{BC} = 6.01 \text{ kJ/mol x } 0.555 \text{ mol } = 3.34 \text{ kJ}$
 $q_{CD} = 10.0 \text{ g x } 4.18 \frac{J}{g \cdot K} \text{ x } 45.0 \text{ K} = 1881 \text{ J} = 1.88 \text{ kJ}$

$$\Delta H = 0.203 \text{ kJ} + 3.34 \text{ kJ} + 1.88 \text{ kJ} =$$
5.42 kJ It would take 5.42 kJ of heat.

- 2. Methane has a boiling point of -161.6 °C and a melting point of -182 °C. What phase changes take place under the following conditions if the pressure is held at 760 mmHg?
 - a) heat is added as the temperature is held at -182 $^{\circ}$ C. The solid, methane, melts to form liquid methane.
 - b) the temperature is lowered from -169 °C to -175 °C. The methane just remains a liquid.