Heats of Formation, ΔH^{o}_{f}

You can find the standard enthalpies of formation in the appendix of your textbook or at the following link:

Standard Enthalpies of Formation

- 1. Write a balanced formation equation for each the following:
 - a) K₂CrC₂O₄
 - b) CH₃Cl
 - c) H₂SO₄-
- 2. Write a balanced formation equation for ethanol, CH₃CH₂OH, and include the value of ΔH^{o}_{f} . (look in the appendix of your book for ΔH^{o}_{f} values or use the link at the top of the page).
- 3. Use the ΔH^{o}_{f} values in the appendix of your text to determine the enthalpy change for the following reactions: (balance the equations)

a)
$$Fe_2O_3$$
 (s) + C (graphite) \rightarrow Fe (s) + CO_2 (g)

b)
$$CaCO_3$$
 (s) \rightarrow CaO (s) $+$ CO_2 (g)

4. Use <u>bond dissociation energies</u> to calculate ΔH^{o}_{rxn} for the following reaction.

$$H_2O(1) + SO_3(g) \rightarrow H_2SO_4(1)$$