Initial Rates

Consider the following chemical reaction:

 $2 \text{ NO } (g) + 2 \text{ H}_2 (g) \rightarrow \text{N}_2 (g) + 2 \text{ H}_2 \text{O} (g)$

Use the data below to answer the following questions.

Experiment	H ₂ , atm	NO, atm	Rate, atm/s
1	0.263	0.100	1.84 x 10 ⁻⁴
2	0.263	0.200	7.11 x 10 ⁻⁴
3	0.263	0.240	1.03 x 10 ⁻³
4	0.197	0.267	9.47 x 10 ⁻⁴
5	0.191	0.267	9.21 x 10 ⁻⁴
6	0.136	0.267	6.45 x 10 ⁻⁴

a) Determine the order with respect to H_2 .

rate ₅	$k \times 0.191^{m} \times 0.267^{n}$	9.21×10 ⁻⁴ atm/s	$0.191^m - 1.45$	2
rate ₆	$\frac{1}{k \times 0.136^m \times 0.267^n}$	6.45×10 ⁻⁴ atm/s	$\frac{1.4}{0.136^m} - 1.4$)
			$1.40^{m} = 1.43$	m = 1

b) Determine the order with respect to NO.

 $\frac{rate_2}{rate_1} = \frac{k \times 0.263^m \times 0.200^n}{k \times 0.263^m \times 0.100^n} = \frac{7.11 \times 10^{-4} atm/s}{1..84 \times 10^{-4} atm/s} \qquad \frac{0.200^n}{0.100^n} = 3.86$ $2^n = 3.9 \quad \mathbf{n} = \mathbf{2}$

c) What is the overall order of the reaction? **3rd order overall**

d) Write the rate law for the reaction.

Rate = $k[H_2][NO]^2$

e) What is the value of the rate constant, k? Solve rate law for k. Use info from any experiment. From Exp. 1: k = rate [H₂][NO]² = 1.84 × 10⁻⁴ atm/s / (0.100 atm)² = 0.0700 atm⁻²s⁻¹
f) What is the rate, in atm/s if the H₂ pressure is 0.155 atm and NO is 0.240 atm?

Rate = 0.0700 atm⁻²s⁻¹ x (0.155 atm)(0.240 atm)² = **6.25 x 10⁻⁴ atm/s**