Initial Rates

Consider the following chemical reaction:
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Use the data below to answer the following questions.

Experiment	H_{2}, atm	NO, atm	Rate, atm $/ \mathrm{s}$
$\mathbf{1}$	0.263	0.100	1.84×10^{-4}
$\mathbf{2}$	0.263	0.200	7.11×10^{-4}
$\mathbf{3}$	0.263	0.240	1.03×10^{-3}
$\mathbf{4}$	0.197	0.267	9.47×10^{-4}
$\mathbf{5}$	0.191	0.267	9.21×10^{-4}
$\mathbf{6}$	0.136	0.267	6.45×10^{-4}

a) Determine the order with respect to H_{2}.

$$
\begin{aligned}
& \text { rate }_{5} \\
& \text { rate }_{6}=\frac{k \times 0.191^{m} \times 0.267^{n}}{k \times 0.136^{m} \times 0.267^{n}}=\frac{9.21 \times 10^{-4} \mathrm{~atm} / \mathrm{s}}{6.45 \times 10^{-4} \mathrm{~atm} / \mathrm{s}}
\end{aligned} \begin{gathered}
\frac{0.191^{m}}{0.136^{m}}=1.43 \\
1.40^{m}=1.43 \quad \mathrm{~m}=1
\end{gathered}
$$

b) Determine the order with respect to NO.

$$
\begin{aligned}
& \frac{\text { rate }_{2}}{\text { rate }_{1}}=\frac{k \times 0.263^{m} \times 0.200^{n}}{k \times 0.263^{m} \times 0.100^{n}}=\frac{7.11 \times 10^{-4} \mathrm{~atm} / \mathrm{s}}{1.84 \times 10^{-4} \mathrm{~atm} / \mathrm{s}} \quad \begin{array}{r}
2^{n}=3.9 \quad n=2
\end{array} \\
& \text { c) What is the overall order of the reaction? } \\
& 3^{\text {rd }} \text { order overall }
\end{aligned}
$$

d) Write the rate law for the reaction.

$$
\text { Rate }=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}
$$

e) What is the value of the rate constant, k ?

Solve rate law for k. Use info from any experiment. From

$$
\text { Exp. 1: } \quad k=\frac{\text { rate }}{\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}}=\frac{1.84 \times 10^{-4} \mathrm{~atm} / \mathrm{s}}{(0.263 \mathrm{~atm}) \times(0.100 \mathrm{~atm})^{2}}=\mathbf{0 . 0 7 0 0} \mathbf{a t m}^{-2} \boldsymbol{s}^{\mathbf{- 1}}
$$

f) What is the rate, in atm/s if the H_{2} pressure is 0.155 atm and NO is 0.240 atm?
Rate $=0.0700 \mathrm{~atm}^{-2} \mathrm{~s}^{-1} \times(0.155 \mathrm{~atm})(0.240 \mathrm{~atm})^{2}=$
$6.25 \times 10^{-4} \mathrm{~atm} / \mathrm{s}$

