Integrated Rate Laws and Half-Life

1. Dimethyl ether, CH₃OCH₃, decomposes at 525.0 °C. The rate constant is 7.6 x 10^{-4} s⁻¹.

 $CH_3OCH_3(g) \rightarrow CH_4(g) + H_2(g) + CO(g)$

If the initial pressure of CH_3OCH_3 is 143 mmHg, what is its pressure after 1126 seconds?

From the units of k, this is first order. $ln\left(\frac{[CH_3OCH_3]_t}{[CH_3OCH_3]_o}\right) = -kt$ [CH₃OCH₃]_t = ? [CH₃OCH₃]_o = 143 mmHg T = 1126 s k = 7.6 x 10⁻⁴ s⁻¹ Solve equation for ln[CH₃OCH₃]_t $ln[CH_3OCH_3]_t = -kt + ln[CH_3OCH_3]_o$ $ln[CH_3OCH_3]_t = -7.6 \times 10^{-4} s^{-1} \times 1126s + ln (143 mmHg) = 4.107$ $ln[CH_3OCH_3]_t = 4.107$ take antilog of both sides of equation $[CH_3OCH_3]_t = e^{4.107} = 60.8 mmHg$

2. The decomposition of NO₂ at 310°C has a rate constant of 0.544 $M^{-1}s^{-1}$. If the initial concentration of NO₂ was 0.0480 M, what is the concentration after 0.250 hr?

According to the units of k, this is second order.

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_o} \qquad k = 0.544 \ M^{-1} \text{s}^{-1} \quad [A]_o = 0.0489 \ M \quad t = 900 \ \text{s}$$
$$\frac{1}{[A]_t} = 0.544 \ M^{-1} \text{s}^{-1} \times 900 \ \text{s} + \frac{1}{0.0489 \ M} = 510 \ M^{-1}$$
$$[A]_t = 1/510 \ M^{-1} = 1.96 \ \text{x} \ 10^{-3} \ M$$

3. The half-life for the first order dissociation of I_2 at 352 °C is 2.56 s. If we start with 0.0450 M I_2 , how much will remain after 4.52 s?

Find k using half-life. $t_{1/2} = \frac{0.693}{2.56s} = 0.2707 / s$

$$ln\left(\frac{[I_2]_t}{[I_2]_o}\right) = -kt \qquad [I_2]_o = 0.0450 \text{ M} \qquad [I_2]_t = ? t = 4.52 \text{ s} \quad k = 0.2707/\text{s}$$

$$ln\left(\frac{[I_2]_t}{0.0450 \text{ M}}\right) = -0.2707 \text{ s}^{-1} \times 4.52 \text{ s} = -1.22 \qquad \text{take antilog of both sides}$$

$$\frac{[I_2]_t}{0.0450 \text{ M}} = e^{-1.22} \qquad [I_2]_t = e^{-1.22} \times 0.0450 \text{ M} = 0.0133 \text{ M}$$