K_{c} and K_{p}

1. Write both K_{p} and K_{c} for the following reaction.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

2. The following reaction has $K_{c}=$ 18.7. Calculate K_{p} at the same temperature. Once equilibrium has been reached, are products or reactants favored?

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})
$$

3. Use the data below to calculate K for the following reaction at $25.0^{\circ} \mathrm{C}$.

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NOBr}(\mathrm{~g}) & \mathrm{K}=? \\
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br} 2(\mathrm{~g}) \rightleftarrows \mathrm{NOBr}(\mathrm{~g}) & \mathrm{Kc}=2.0 \\
2 \mathrm{NO}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \mathrm{Kc}=2.1 \times 10^{30}
\end{array}
$$

4. The following reaction has $K_{p}=49$ at 729 K
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$
Calculate K .
