K_{c} and K_{p}

1. Write both K_{p} and K_{c} for the following reaction.

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& K_{c}=\frac{\left\lfloor\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}{\left\lfloor N H_{3}\right]^{4}\left\lfloor\mathrm{O}_{2}\right]^{5}} \quad K_{p}=\frac{P_{N O}^{4} P_{H_{2} \mathrm{O}}^{6}}{P_{N H_{3}}^{4} P_{O_{2}}^{5}}
\end{aligned}
$$

2. The following reaction has $K_{c}=18.7$ at $28.0^{\circ} \mathrm{C}$. Calculate K_{p} at the same temperature. Once equilibrium has been reached, are products or reactants favored?

$$
\begin{aligned}
& \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \\
& K_{p}=K_{c}(R T)^{\Delta n} \quad \mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \Delta \mathrm{n}=1 \mathrm{~mol}-2 \mathrm{~mol}=-1 \\
& \mathrm{~T}=28.0^{\circ} \mathrm{C}+273.15=301.15 \mathrm{~K} \\
& K_{p}=18.7\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 301.15 \mathrm{~K}\right)^{-1}=\mathbf{0 . 7 5 6}
\end{aligned}
$$

$K c=18.7$, and products are favored. $K p$ is less than 1 , therefore the reactants are favored due to Δn being equal to -1.
3. Use the data below to calculate K for the following reaction at $25.0^{\circ} \mathrm{C}$.
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NOBr}(\mathrm{g}) \quad \mathrm{K}=$?

$$
\begin{array}{ll}
2 \mathrm{NO}(g)+\mathrm{Br} 2(g) \rightleftarrows \mathrm{NOBr}(g) & \mathrm{Kc}=2.0 \\
2 \mathrm{NO}(g) \rightleftarrows \mathrm{N}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) & \mathrm{Kc}=2.1 \times 10^{30}
\end{array}
$$

Leave the first equation alone and reverse the second equation.
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br} 2(\mathrm{~g}) \rightleftarrows \mathrm{NOBr}(\mathrm{g}) \quad \mathrm{Kc}=2.0$
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g}) \quad \mathrm{Kc}=\frac{1}{2.1 \times 10^{30}}$

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftarrows 2 \mathrm{NOBr}(g) \quad \mathrm{K}=2.0 \times \frac{1}{2.1 \times 10^{30}}=\mathbf{9 . 5} \times \mathbf{1 0}^{-31}
$$

4. The following reaction has $K_{p}=49$ at 729 K . Calculate K_{c}.

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{~g}) \\
& K_{c}=\frac{K_{p}}{(R T)^{\Delta n}} \quad \Delta \mathrm{n}=0 \text {, therefore }(\mathrm{RT})^{0}=1 \text { and } K_{p}=K_{c}=49
\end{aligned}
$$

