Reaction Rates

1. Consider the following plot.

a) Calculate the rate of reaction from 20 to 80 seconds.

$$
\frac{0.35 M-0.55 M}{80 s-20 s}=\mathbf{0 . 0 0 3 3} \mathrm{M} / \mathrm{s}
$$

b) Calculate the rate of reaction from 0 to 100 seconds.

$$
\frac{0.31 M-0.64 M}{100 s-0 s}=\mathbf{0 . 0 0 3 3} \mathbf{M} / \mathrm{s}
$$

c) What is the instantaneous rate at 60 seconds? Draw a tangent line at 60 s . The slope of this line is the rate.

$$
m=\frac{0.4 M-0.48 \mathrm{M}}{60 s-40 \mathrm{~s}}=\mathbf{0 . 0 0 4} \mathbf{M} / \mathrm{s}
$$

2. Write the rate expression in terms of reactants and products for the following reaction. What is the rate of appearance of MnSO4 if the rate of disappearance of FeSO_{4} is $0.41 \mathrm{M} / \mathrm{s}$?
$2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
-\frac{\Delta\left[\mathrm{KMnO}_{4}\right]}{2 \Delta t}=-\frac{\Delta\left[\mathrm{FeSO}_{4}\right]}{10 \Delta t}=-\frac{\Delta\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{K}_{2} \mathrm{SO}_{4}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]}{5 \Delta t}=\frac{\Delta\left[\mathrm{MnSO}_{4}\right]}{2 \Delta t}=\frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{8 \Delta t} \\
\frac{\Delta\left[\mathrm{MnSO}_{4}\right]}{2 \Delta t}=-\frac{\Delta\left[\mathrm{FeSO}_{4}\right]}{10 \Delta t} \\
\frac{\Delta\left[\mathrm{MnSO}_{4}\right]}{\Delta t}=\frac{2 \times 0.41 \mathrm{M}}{10}=\mathbf{0 . 0 8 2 ~ M} / \mathrm{s}
\end{gathered}
$$

