Shells, Subshells, and Quantum Numbers

What is the maximum number of electrons that can be held in the following principal energy levels?
$n=1 \quad 2$
$\mathrm{n}=2 \quad 8$
$n=3$ \qquad
$n=4 \ldots 32$
$n=5 \ldots$
$n=6 _$72

Indicate the number of subshells in each principal energy level as well as the letter designation of each subshell.
$n=1 _1 ; s _n=22 ; s, p _n=33 ; s, p, d_{_} n=44 ; s, p, d, f$

What is the maximum number of electrons that can reside in each of the following subshells?
s_2
P _6
d_10
f _14

What is the maximum number of electrons that can be held in an orbital? _2

Indicate if energy is absorbed or released:

$$
\begin{array}{ll}
n=2 \rightarrow n=4 \text { absorbed } & n=3 \rightarrow n=2 \text { released } \\
n=6 \rightarrow n=7 \text { absorbed } & n=4 \rightarrow n=2 \text { released }
\end{array}
$$

An s subshell has $1=\ldots$
A p subshell has $1=\ldots$
A d subshell has $1=\underline{2}$
An f subshell has $1=\ldots$
If $1=0, m l=0 \quad$ If $\mid=1, m l=-1,0,+1$
If $|=2, m l=-2,-1,0,+1,+2 \quad| f \mid=3, m l=-3,-2,-1,0,+1,+2,+3$

