Stoichiometry Part 3: Limiting Reactant and Percent Yield

Consider the following chemical equation to answer the questions.
$\mathrm{CaCN}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{NH}_{3}(\mathrm{~g})$
a) Check to see if the equation is balanced. If not, balance it.

$$
\mathrm{CaCN}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

b) Which is the limiting reagent if $23.25 \mathrm{~g} \mathrm{of}_{\mathrm{CaCN}}^{2}$ is reacted with 30.00 g of water? (show work)

First, determine the number of moles of CaCO_{3} or NH_{3} produced from each reactant. Here I use CaCO_{3}.

$$
23.25 \mathrm{~g} \mathrm{CaCN}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CaCN}_{2}}{80.102 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{1 \mathrm{~mol} \mathrm{CaCN}_{2}}=0.2903 \mathrm{~mol} \mathrm{CaCO}_{3}
$$

$$
30.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.5549 \mathrm{~mol} \mathrm{CaCO}_{3}
$$

CaCN_{2} is the limiting reagent. Only $0.2903 \mathrm{~mol} \mathrm{CaCO}_{3}$ can be produced.
c) How many grams of CaCO_{3} are produced?
$\mathrm{mol} \rightarrow \mathrm{g}$ and 1 mole of $\mathrm{CaCO}_{3}=100.0869 \mathrm{~g}$
$0.2903 \mathrm{~mol} \mathrm{CaCO}_{3} \times \frac{100.0869 \mathrm{~g} \mathrm{CaCO}_{3}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=29.06 \mathrm{~g} \mathrm{CaCO}_{3}$
d) What is the percent yield if $27.34 \mathrm{~g}^{\text {of } \mathrm{CaCO}_{3} \text { was recovered? }}$

$$
\% y i e l d=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100=\frac{27.34 \mathrm{~g}}{29.06 \mathrm{~g}} \times 100=\mathbf{9 4 . 1} \%
$$

e) How much water was left unreacted?

There are several ways to do this problem. I use mole ratios. I will use the mole ratio of CaCO_{3} to $\mathrm{H}_{2} \mathrm{O}$ to determine how much water is needed in the reaction. Then I subtract the amount of water required from the total amount given in the problem.
Mole Ratios: $\frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}$ or $\frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$ and $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g}$
$0.2903 \mathrm{~mol} \mathrm{CaCO}_{3} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{mol} \mathrm{CaCO}_{3}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=15.69 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ needed for reaction

$$
30.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}-15.69 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=14.31 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \text { not reacted }
$$

