The Ideal Gas Law

$$
P V=n R T
$$

1. A 65.62 g sample of N_{2} occupies a volume of 12.0 L at a temperature of $145.0^{\circ} \mathrm{C}$. What is the pressure of the gas?

$$
\begin{aligned}
& P V=n R T \quad P=\frac{n R T}{V} \quad n=65.62 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{28.0 \mathrm{~g}}=2.34 \mathrm{~mol} \quad \mathrm{~V}=12.0 \mathrm{~L} \\
& \quad \mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \mathrm{~T}=145.0^{\circ} \mathrm{C}+273.15=418.15 \mathrm{~K} \\
& P=\frac{2.34 \mathrm{~mol} \times 418.15 \mathrm{~K} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}}{12.0 \mathrm{~L}}=6.69 \mathrm{~atm}
\end{aligned}
$$

2. How many molecules of oxygen, O_{2}, are in a 45.0 L container under 1.25 atm of pressure at $135^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{PV}=n R T \quad n=\frac{P V}{R T} \quad P=1.25 \mathrm{~atm}, \mathrm{~V}=45.0 \mathrm{~L}, \mathrm{~T}=408 \mathrm{~K} \\
& n=\frac{1.25 \mathrm{~atm} \times 45.0 \mathrm{~L}}{408 \mathrm{~K} \times 0.082 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}}=1.68 \mathrm{~mol} \mathrm{O} \\
& 2
\end{aligned}
$$

3. Calculate the molar mass of a gas if a 28.54 g sample is under a pressure of 755 mmHg at $27.6^{\circ} \mathrm{C}$. The volume of gas is 28.6 L .

$$
\begin{aligned}
& M_{m}=\frac{m R T}{P V} \quad \mathrm{~m}=28.54 \mathrm{~g}, \mathrm{P}=0.993 \mathrm{~atm}, \mathrm{~T}=300.75 \mathrm{~K}, \mathrm{~V}=28.6 \mathrm{~L} \\
& M_{m}=\frac{28.54 \mathrm{~g} \times 300.75 \mathrm{~K} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}}{0.993 \mathrm{~atm} \times 28.6 \mathrm{~L}}=24.8 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

4. What is the density of CO_{2} gas at 1.65 atm and $32.6^{\circ} \mathrm{C}$?

$$
d=\frac{M_{m} P}{R T}=\frac{44.0 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 1.65 \mathrm{~atm}}{305.75 \mathrm{~K} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}}=2.89 \mathrm{~g} / \mathrm{L}
$$

5. Calculate the density of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, at 0.82 atm and $120^{\circ} \mathrm{C}$.

$$
d=\frac{M_{m} P}{R T}=\frac{30.07 \frac{\mathrm{~g}}{\mathrm{~mol}} \times 0.82 \mathrm{~atm}}{393 \mathrm{~K} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}}=\mathbf{0 . 7 6} \mathrm{g} / \mathrm{L}
$$

