Unit Cells

1. A body centered cubic unit cell contains how many atoms? How many atoms in a primitive cubic cell? How many atoms in a bodycentered cubic cell?

Body centered unit cell: 2 atoms
Primitive unit cell: 1 atom
Face-centered unit cell: 4 atoms
2. An unknown metal crystallizes in a face-centered cubic arrangement with an edge length of 351 pm . The density of the unknown metal is $6.83 \mathrm{~g} / \mathrm{cm}^{3}$. What is the radius and atomic mass? Identify the metal.
$d=m / V \quad m=6.83 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times\left(351 \mathrm{pm} \times \frac{1 \times 10^{-10} \mathrm{~cm}}{1 \mathrm{pm}}\right)^{3}=2.95 \times 10^{-22} \mathrm{~g}$
a face-centered unit cell has 4 atoms
molar mass $=\frac{2.95 \times 10^{-22} \mathrm{~g}}{4 \text { atoms }} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=44.4 \mathrm{~g} / \mathrm{mol}$
radius for fcc is $\frac{A}{\sqrt{8}}=\frac{351 \mathrm{pm}}{\sqrt{8}}=124 \mathbf{~ p m}$ The metal could be Sc.
3. Sodium crystallizes into a body-centered cubic unit cell. The density of sodium is $0.972 \mathrm{~g} / \mathrm{cm}^{3}$. What is the edge length of the unit cell? What is the radius of a sodium atom? Provide the answers in pm.
mass of one Na atom $=\frac{22.9898 \mathrm{~g}}{\mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { atoms }}=3.82 \times 10^{-23} \mathrm{~g} / \mathrm{atom}$
There are 2 Na atoms in each unit cell
Mass of unit cell $=2 \times\left(3.82 \times 10^{23}\right.$ g/atom $)=7.64 \times 10^{-23} \mathrm{~g}$
Cell volume $=$ unit cell mass $/$ density $=\frac{7.64 \times 10^{-23} g}{0.972 \mathrm{~g} / \mathrm{cm}^{3}}=7.86 \times 10^{-23} \mathrm{~cm}^{3}$
Edge length $=A=\sqrt[3]{7.86 \times 10^{-23} \mathrm{~cm}^{3}}=4.28 \times 10^{-8} \mathrm{~cm}=429 \mathrm{pm}$
$r=\frac{\sqrt{3} A}{4}=\frac{\sqrt{3} \times 429 \mathrm{pm}}{4}=\mathbf{1 8 6} \mathbf{~ p m}$
4. Barium metal has a density of $3.62 \mathrm{~g} / \mathrm{cm}^{3}$. It crystallizes in a cubic unit cell with an edge length of 502 pm . How many Ba atoms are in the unit cell? Which type of unit cell does Ba crystallize in?
mass of one Ba atom $=\frac{137.327 \mathrm{~g}}{\mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{6.02 \times 11^{23} \mathrm{atoms}}=2.28 \times 10^{-22} \mathrm{~g} / \mathrm{atom}$
volume of unit cell $=s^{3}=\left(502 \mathrm{pm} \times \frac{10^{-10} \mathrm{~cm}}{1 \mathrm{pm}}\right)^{3}=1.265 \times 10^{-22} \mathrm{~cm}^{3}$
mass of unit cell $=3.62 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times\left(1.265 \times 10^{-22} \mathrm{~cm}^{3}\right)=4.58 \times 10^{-22} \mathrm{~g}$
number of Ba atoms in unit cell

$$
=\frac{\text { unit cell mass }}{\text { mass of one Ca atom }}=\frac{4.58 \times 10^{-22} g}{2.28 \times 10^{-22}}=2.01=2 \text { atoms }
$$

This would be a body-centered cubic unit cell.

