Valence Bond Theory and Hybridization

Explain the difference between a σ bond and π bond.

A σ bond is due to end to end overlap of p orbitals or overlap of s orbitals or an overlap between s and p orbitals. All single bonds are σ bonds. The π bond is due to side to side overlap of p orbitals. There is one π bond in a double bond and 2 π bonds in a triple bond.

What hybridization is expected for atoms that have the following numbers of charge clouds?

a.) 2 sp b) 3 sp² c) 4 sp³

What hybridization is expected for the underlined atom in each of the following: (Hint: Draw the Lewis Structure)

a) <u>B</u> H₃	b) <u>B</u> H₄⁻	c) H <u>2C</u> O
sp ²	sp ³	sp ²
d) <u>CH2N</u> H2	c) CH₃⁻	d) CH₃+
C is sp ³ N is sp ³	sp ³	sp ²

Indicate the types of orbital overlap for the two carbon atoms in CH_3COOH . What is the hybridization of the two carbons and two oxygens?

Carbon 1: $C sp^3 \rightarrow H s$ and $C sp^3 \rightarrow C sp^2$ Carbon 2: $C sp^2 \rightarrow C sp^3$, $C sp^2 \rightarrow O sp^3$, $C sp^2 \rightarrow O sp^3$ C1 is sp^3 hybridized, C2 is sp^2 hybridized, and O is sp^3 hybridized.

How many sigma bonds? How many pi bonds?