Volumetric (Solution) Stoichiometry and Titration

1. A 45.00 mL sample of HNO_{3} was titrated with 0.450 M NaOH . The equivalence point volume was 37.54 mL of NaOH . What is the concentration of the HNO_{3} ? (Write a balanced equation)
2. What volume of $0.135 \mathrm{M} \mathrm{HClO}_{4}$ is required to neutralize 50.00 mL of $0.0926 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$? Write a balanced equation.
3. Consider the following chemical equation.
$3 \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{~K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{KCl}(\mathrm{aq})$
If 25.00 mL of $0.455 \mathrm{M} \mathrm{CaCl}_{2}$ is mixed with 30.00 mL of $0.365 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$, how many grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are formed?
