Volumetric (Solution) Stoichiometry and Titration

1. A 45.00 mL sample of HNO_{3} was titrated with 0.450 M NaOH . The equivalence point volume was 37.54 mL of NaOH . What is the concentration of the HNO_{3} ? (Write a balanced equation)

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)
$$

Moles of $\mathrm{NaOH}=\mathrm{V} \times M=0.03254 \mathrm{~L} \times 0.450 \mathrm{M}=0.01464 \mathrm{~mol} \mathrm{NaOH}$
At the equivalence point, all of the NaOH will have reacted with all of the acid. There is a 1:1 ratio of base to acid $0.01464 \mathrm{~mol} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{hNO}_{3}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.01464 \mathrm{~mol} \mathrm{HNO} 3$

$$
\frac{0.01464 \mathrm{~mol} \mathrm{HNO}_{3}}{0.04500 \mathrm{~L}}=\mathbf{0 . 3 2 5} \mathbf{~ M}
$$

2. What volume of $0.135 \mathrm{M} \mathrm{HClO}_{4}$ is required to neutralize 50.00 mL of $0.0926 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$? Write a balanced equation.
$2 \mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{mol} \mathrm{Ba}(\mathrm{OH})_{2}=0.05000 \mathrm{~L} \times 0.0926 \mathrm{M}=0.00463 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$

$$
0.00463 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{2 \mathrm{~mol} \mathrm{HClO}_{4}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}=0.00926 \mathrm{~mol} \mathrm{HClO}_{4}
$$

We know the molarity and the number of moles of acid. We solve for the volume in L and then convert to mL .

$$
\frac{0.00926 \mathrm{~mol}}{0.135 \frac{\mathrm{~mol}}{\mathrm{~L}}}=\mathbf{0 . 0 6 8 6} \boldsymbol{L}=\mathbf{6 8 . 6} \mathrm{mL}
$$

3. Consider the following balanced chemical equation.

$$
3 \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{~K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{KCl}(\mathrm{aq})
$$

If 25.00 mL of $0.455 \mathrm{M} \mathrm{CaCl}_{2}$ is mixed with 30.00 mL of $0.365 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$, how many grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are formed?
moles of $\mathrm{CaCl}_{2}=0.02500 \mathrm{~L} \times 0.455 \mathrm{~mol} / \mathrm{L}=0.011375 \mathrm{~mol} \mathrm{CaCl}_{2}$
moles of $\mathrm{K}_{3} \mathrm{PO}_{4}=0.03000 \mathrm{~L} \times 0.365 \mathrm{~mol} / \mathrm{L}=0.01095 \mathrm{~mol} \mathrm{~K}{ }_{3} \mathrm{PO}_{4}$
Find limiting reactant:
$0.011375 \mathrm{~mol} \mathrm{CaCl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{~mol} \mathrm{CaCl}_{2}}=0.003792 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$
$0.01095 \mathrm{~mol} \mathrm{~K} \mathrm{~K}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{2 \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4}}=0.005475 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$
The CaCl_{2} is the limiting reactant. The $\mathrm{Mm}_{\mathrm{m}}\left(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=310.18 \mathrm{~g} / \mathrm{mol}\right.$

$$
0.003792 \mathrm{~mol} \mathrm{Ca} 3\left(\mathrm{PO}_{4}\right)_{2} \times \frac{310.18 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=\mathbf{1} .18 \mathrm{~g} \mathrm{Ca} 3\left(\mathrm{PO}_{4}\right)_{2}
$$

